Skip to main content
Log in

Recent developments in ductile bulk metallic glass composites

  • Prospective Articles
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Offering a unique suite of mechanical, physical, and chemical properties, bulk metallic glasses (BMGs) show significant promise as engineering materials. Unfortunately, most BMGs exhibit low tensile ductility at ambient temperature that limits their use as structural (load-bearing) materials. To overcome this problem, BMG composites (BMGCs) containing a second phase are being developed for improving ductility by controlling the mechanics of shear band nucleation and growth in the glassy matrix, which is the primary mode of failure in these materials. This review describes some recent developments in BMGCs and discusses the influence of the type of second phase on mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. M.M. Trexler and N.N. Thadhani: Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 55, 759 (2010).

    CAS  Google Scholar 

  2. A. Inoue and A. Takeuchi: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).

    CAS  Google Scholar 

  3. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).

    Google Scholar 

  4. M.F. Ashby and A.L. Greer: Metallic glasses as structural materials. Scripta Mater. 54, 321 (2006).

    CAS  Google Scholar 

  5. A.L. Greer: Metallic glasses…on the threshold. Mater. Today 12, 14 (2009).

    CAS  Google Scholar 

  6. J. Schroers: Processing of bulk metallic glass. Adv. Mater. 21, 1 (2009).

    Google Scholar 

  7. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).

    CAS  Google Scholar 

  8. J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).

    Google Scholar 

  9. M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie: A damage-tolerant glass. Nature Mater. 10, 123 (2011).

    CAS  Google Scholar 

  10. Z. Bian, H. Kato, C.L. Qin, W. Zhang, and A. Inoue: Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).

    CAS  Google Scholar 

  11. M.L. Lee, Y. Li, and C.A. Schuh: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).

    CAS  Google Scholar 

  12. L.Q. Xing, J. Eckert, W. Loser, and L. Schultz: High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr-Ti-Cu-Ni-Al amorphous alloys. Appl. Phys. Lett. 74, 664 (1999).

    CAS  Google Scholar 

  13. D.C. Hofmann, J.-Y.S., AWiest, G. Duan, M-L. Lind, M.D. Demetriou, and W.L. Johnson: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).

    CAS  Google Scholar 

  14. H. Choi-Yim, R.D. Conner, F. Szuecs, and W.L. Johnson: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 50, 2737 (2002).

    CAS  Google Scholar 

  15. K. Hajlaoui, A.R. Yavari, A. LeMoulec, W.J. Botta, F.G. Vaughan, A.L.G. J. Das, and A. Kvick: Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-Crystal. Solids 353, 327 (2007).

    CAS  Google Scholar 

  16. A. Inoue, W. Zhang, T. Tsurui, A.R. Yavari, and A.L. Greer: Unusual roomtemperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).

    CAS  Google Scholar 

  17. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    CAS  Google Scholar 

  18. R.D. Conner, R.B. Dandliker, and W.L. Johnson: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).

    CAS  Google Scholar 

  19. H. Choi-Yim, S.-Y. Lee, and R.D. Conner: Mechanical behavior of Mo and Ta wire-reinforced bulk metallic glass composites. Scripta Mater. 58, 763 (2008).

    CAS  Google Scholar 

  20. F. Szuecs, C.P. Kim, and W.L. Johnson: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu 6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).

    CAS  Google Scholar 

  21. K.M. Flores, W.L. Johnson, and R.H. Dauskardt: Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Mater. 49, 1181 (2003).

    CAS  Google Scholar 

  22. J. Eckert, J. Das, S. Pauly, and C. Duhamel: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).

    CAS  Google Scholar 

  23. A. Inoue: Mechanical properties of Zr-based bulk glassy alloys containing nanoscale compound particles. Intermetallics 8, 455 (2000).

    CAS  Google Scholar 

  24. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari: Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Mater. 52, 1631 (2004).

    CAS  Google Scholar 

  25. R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003).

    CAS  Google Scholar 

  26. L.H. Dai and Y.L. Bai: Basic mechanical behaviors and mechanics of shear banding in BMGs. Int. J. Impact Eng. 35, 704 (2008).

    Google Scholar 

  27. C.C. Hays, C.P. Kim, and W.L. Johnson: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng. A 304, 650 (2001).

    Google Scholar 

  28. J. Eckert, J. Das, S. Pauly, and C. Duhamel: Processing routes, microstructure and mechanical properties of metallic glasses and their composites. Adv. Eng. Mater. 9, 443 (2007).

    CAS  Google Scholar 

  29. T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, UK, 1995).

    Google Scholar 

  30. H. Choi-Yim, R.D. Conner, and W.L. Johnson: Microstructures and properties of metal reinforced bulk metallic glass composites. Mater. Sci. Forum 360–362, 55 (2001).

    Google Scholar 

  31. M. Kinaka, H. Kato, M. Hasegawa, and A. Inoue: High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid. Mater. Sci. Eng A 494, 299 (2008).

    Google Scholar 

  32. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue: Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scripta Mater. 62, 278 (2010).

    CAS  Google Scholar 

  33. J. Eckert, M. Seidel, A. Kubler, U. Klement, and L. Schultz: Oxide dispersion strengthened mechanically alloyed amorphous Zr-Al-Cu-Ni composites. Scripta Mater. 38, 595 (1998).

    CAS  Google Scholar 

  34. H.M. Fu, H.F. Zhang, H. Wang, Q.S. Zhang, and Z.Q. Hu: Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in situ TiC particles. Scripta Mater. 52, 669 (2005).

    CAS  Google Scholar 

  35. H.K. Lim, E.S. Park, J.S. Park, W.T. Kim, and D.H. Kim: Shear band formation and mechanical properties of cold-rolled bulk metallic glass and metallic glass matrix composite. J. Mater. Sci. 40, 6127 (2005).

    CAS  Google Scholar 

  36. R.D. Dandliker, R.D. Conner, and W.L. Johnson: Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 13, 10 (1998).

    Google Scholar 

  37. C.P. Kim, R. Bush, A. Masuhr, H. Choi-Yim, and W.L. Johnson: Processing of carbon-fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites. Apply. Phys. Lett. 79, 1456 (1997).

    Google Scholar 

  38. M.E. Siegrist and J.F. Löffler: Bulk metallic glass-graphite composites. Scripta Mater. 56, 1079 (2007).

    CAS  Google Scholar 

  39. H. Choi-Yim, R. Busch, U. Köster, and W.L. Johnson: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).

    CAS  Google Scholar 

  40. J. Schroers, T. Nguyen, and G.A. Croopnick: A novel metallic glass composite synthesis method. Scripta Mater. 56, 177 (2007).

    CAS  Google Scholar 

  41. J.T. Fan, Z.F. Zhang, S.X. Mao, B.L. Shen, and A. Inoue: Deformation and fracture behaviors of Co-based metallic glass and its composite with dendrites. Intermetallics 17, 445 (2009).

    CAS  Google Scholar 

  42. J. Das, W. Loser, U. Kuhn, J. Eckert, S.K. Roy, and L. Schultz: Highstrength Zr-Nb-(Cu,Ni,Al) composites with enhanced plasticity. Apply. Phys. Lett. 82, 4690 (2003).

    CAS  Google Scholar 

  43. H. Choi-Yim, R.D. Conner, and W.L. Johnson: In situ composite formation in the Ni-(Cu)-Ti-Zr-Si system. Scripta Mater. 53, 1467 (2005).

    CAS  Google Scholar 

  44. W. Xu, R. Zheng, K.J. Laws, S.P. Ringer, and M. Ferry: In situ formation of crystalline flakes in Mg-based metallic glass composites by controlled inoculation. Acta Mater. 59, 7776 (2011).

    CAS  Google Scholar 

  45. L. Robin, K.J. Laws, W. Xu, G. Kurniawan, K. Privat, and M. Ferry: The three-dimensional structure of Mg-rich plates in as-cast mg-based bulk metallic glass composites. Metall. Mater. Trans A 41, 1691 (2010).

    Google Scholar 

  46. C.L.C. Fan, D.V. Louzguine, and A. Inoue: Nanocrystalline composites with high strength obtained in Zr-Ti-Ni-Cu-Al bulk amorphous alloys. Appl. Phys. Lett. 75, 340 (1999).

    CAS  Google Scholar 

  47. X. Hui, W. Dong, G.L. Chen, and K.F. Yao: Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites. Acta Mater. 55, 907 (2007).

    CAS  Google Scholar 

  48. H. Tan, Y. Zhang, and Y. Li: Synthesis of La-based in situ bulk metallic glass matrix composite. Intermetallics 10, 1203 (2002).

    CAS  Google Scholar 

  49. A. Leonhar, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, and L. Schultz: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 905 (1998).

    Google Scholar 

  50. R. Doglione, S. Spriano, and L. Battezzati: Static mechanical characterization of a bulk amorphous and nanocrystalline Zr40Ti14Ni11Cu10Be25 alloy. Nanostruct. Mater. 8, 447 (1997).

    CAS  Google Scholar 

  51. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson: Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997).

    CAS  Google Scholar 

  52. W. Xu, L. Robin, R. Zheng, K.J. Laws, and M. Ferry: Phase redistribution in an in situ Mg-based bulk metallic glass composite during deformation in the supercooled liquid region. Scripta Mater. 63, 556 (2010).

    CAS  Google Scholar 

  53. J.R. Strife and K.M. Prewo: Mechanical behaviour of an amorphous metal ribbon reinforced resin-matrix composite. J. Mater. Sci. 17, 359 (1982).

    CAS  Google Scholar 

  54. C. Fan, C.F. Li, A. Inoue, and V. Haas: Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys. Phys. Rev. B 61, R3761 (2000).

    Google Scholar 

  55. X.L. Fu, Y. Li, and C.A. Schuh: Mechanical properties of metallic glass matrix composites: effects of reinforcement character and connectivity. Scripta Mater. 56, 617 (2007).

    CAS  Google Scholar 

  56. Z.G. Li, X. Hui, C.M. Zhang, and G.L. Chen: Formation of Mg–Cu–Zn–Y bulk metallic glasses with compressive strength over gigapascal. J. Alloys Compds. 454, 168 (2008).

    CAS  Google Scholar 

  57. J.Z. Liang and R.K.Y. Li: Rubber toughening in polypropylene–a review. J. Appl. Polym. Sci. 77, 409 (2000).

    CAS  Google Scholar 

  58. D.C. Hofmann: Shape memory bulk metallic glass composites. Science 329, 1294 (2010).

    CAS  Google Scholar 

  59. S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Mater. 9, 473 (2010).

    CAS  Google Scholar 

  60. S. Pauly, G. Liu, G. Wang, J. Das, K.B. Kim, U. Kühn, and J. Eckert: Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites. Appl. Phys. Lett. 95, 101906 (2009).

    Google Scholar 

  61. P. Gargarella, S. Pauly, K.K. Song, J. Hu, N.S. Barekar, M. Samadi Khoshkhoo, A. Teresiak, H. Wendrock, U. Kühn, C. Ruffing, E. Kerscher, and J. Eckert: Ti-Cu-Ni shape memory bulk metallic glass composites. Acta Mater. 61, 151 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the continuing support of the Australian Research Council Centre of Excellence for Design in Light Metals (Grant No. CEO56i574) for partly funding our research on bulk metallic glasses and their composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferry, M., Laws, K.J., White, C. et al. Recent developments in ductile bulk metallic glass composites. MRS Communications 3, 1–12 (2013). https://doi.org/10.1557/mrc.2012.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.32

Navigation