Skip to main content
Log in

Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Boron nitride nanotube (BNNT) reinforced titanium (Ti) matrix composites were prepared using the cold press-and-sinter method. In the composite sintered at 800 °C for 1 h, BNNTs were homogeneously distributed in the Ti matrix and restricted the growth of Ti grains. The compressive strength of the as-sintered Ti-4 vol% BNNT composite achieved 985 MPa at room temperature versus 678 MPa without the BNNT reinforcements. The highest compressive strength of 277 MPa at 500 °C was obtained from the Ti-5 vol% BNNT composite. When sintered at 1000 °C, chemical reactions occurred between Ti and BNNTs leading to the formation of the interfacial TiB phase, which serves as a strong binding between BNNTs and the Ti matrix. The reinforcements were attributed by a mixture of BNNTs and TiB after sintering at 1000 °C for 3 h. However, no BNNT was observed in the microstructure after sintering at 1100 °C for 3 h due to complete transformation into TiB whiskers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. G. Lütjering and J.C. Williams: Titanium, 2nd ed. (Springer, Berlin, Germany, 2007).

    Google Scholar 

  2. A.S.M.I.H. Committee: ASM Handbook: Vol. 02-Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, Materials Park, Ohio, 1990).

    Google Scholar 

  3. F.H. Froes and D. Eylon: Powder metallurgy of titanium alloys. Int. Mater. Rev. 35, 162–184 (1990).

    Article  CAS  Google Scholar 

  4. F.H. Froes, S.J. Mashl, J.C. Hebeisen, V.S. Moxson, and V.A. Duz: The technologies of titanium powder metallurgy. JOM 56, 46–48 (2004).

    Article  CAS  Google Scholar 

  5. C.M. Ward-Close, M.R. Winstone, and P.G. Partridge: Developments in the processing of titanium alloy metal matrix composites. Mater. Des. 15, 67–77 (1994).

    Article  CAS  Google Scholar 

  6. J. Williams: Thermo-mechanical processing of high-performance Ti alloys: Recent progress and future needs. J. Mater. Process. Technol. 117, 370–373 (2001).

    Article  CAS  Google Scholar 

  7. J.C. Williams: Alternate materials choices—Some challenges to the increased use of Ti alloys. Mater. Sci. Eng., A 263, 107–111 (1999).

    Article  Google Scholar 

  8. S. Rawal: Metal-matrix composites for space applications. JOM 53, 14–17 (2001).

    Article  CAS  Google Scholar 

  9. R.B. Mason, L.A. Gintert, M.F. Singleton, and D. Skelton: Composite for military equipment. Adv. Mater. Processes 162, 37–39 (2004).

    CAS  Google Scholar 

  10. J. Montgomery, M.H. Wells, B. Roopchand, and J. Ogilvy: Low-cost titanium armors for combat vehicles. JOM 49, 45–47 (1997).

    Article  CAS  Google Scholar 

  11. T. Saito: The automotive application of discontinuously reinforced TiB–Ti composites. JOM 56, 33–36 (2004).

    Article  CAS  Google Scholar 

  12. T. Saito, H. Takamiya, and T. Furuta: Thermomechanical properties of P/M β titanium metal matrix composite. Mater. Sci. Eng., A 243, 273–278 (1998).

    Article  Google Scholar 

  13. S. Bakshi, D. Lahiri, and A. Agarwal: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 41–64 (2010).

    Article  CAS  Google Scholar 

  14. K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu: High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos. Sci. Technol. 72, 1291–1297 (2012).

    Article  CAS  Google Scholar 

  15. F. Xue, S. Jiehe, F. Yan, and C. Wei: Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites. Mater. Sci. Eng., A 527, 1586–1589 (2010).

    Article  CAS  Google Scholar 

  16. J. Li, L. Wang, J. Qin, Y. Chen, W. Lu, and D. Zhang: Thermal stability of in situ synthesized (TiB + La2O3)/Ti composite. Mater. Sci. Eng., A 528, 4883–4887 (2011).

    Article  CAS  Google Scholar 

  17. J.A. Vreeling, V. Ocelík, and J.T.M. De Hosson: Ti–6Al–4V strengthened by laser melt injection of WCp particles. Acta Mater. 50, 4913–4924 (2002).

    Article  CAS  Google Scholar 

  18. S.D. Luo, Q. Li, J. Tian, C. Wang, M. Yan, G.B. Schaffer, and M. Qian: Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scr. Mater. 69, 29–32 (2013).

    Article  CAS  Google Scholar 

  19. M. Ishigami, S. Aloni, and A. Zettl: Properties of boron nitride nanotubes. In Scanning Tunneling Microscopy/Spectroscopy and Related Techniques: 12th International Conference, P.M.K.a.M. Kemerink, ed. (AIP Conference Proceedings American Institiute of Physics, Eindhoven, the Netherlands, 2003); pp. 94–99.

  20. N.G. Chopra and A. Zettl: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998).

    Article  CAS  Google Scholar 

  21. A.P. Suryavanshi, M-F. Yu, J. Wen, C. Tang, and Y. Bando: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527–2529 (2004).

    Article  CAS  Google Scholar 

  22. H. Shen: Thermal-conductivity and tensile-properties of BN, SiC and Ge nanotubes. Comput. Mater. Sci. 47, 220–224 (2009).

    Article  CAS  Google Scholar 

  23. Y. Chen, J. Zou, S.J. Campbell, and G.L. Caer: Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004).

    Article  CAS  Google Scholar 

  24. D. Golberg, Y. Bando, C. Tang, and C. Zni: Boron nitride nanotubes. Adv. Mater. 19, 2413–2432 (2007).

    Article  CAS  Google Scholar 

  25. C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, and D. Golberg: Characteristics of boron nitride nanotube–polyaniline composites. Angew. Chem., Int. Ed. 44, 7929–7932 (2005).

    Article  CAS  Google Scholar 

  26. C. Zhi, Y. Bando, C. Tang, S. Honda, H. Kuwara, and D. Golberg: Boron nitride nanotubes/polystyrene composites. J. Mater. Res. 21, 2794–2800 (2006).

    Article  CAS  Google Scholar 

  27. J. Ravichandran, A.G. Manoj, J. Liu, I. Manna, and D.L. Carroll: A novel polymer nanotube composite for photovoltaic packaging applications. Nanotechnology 19, 085712 (2008).

    Article  CAS  Google Scholar 

  28. T. Terao, C. Zhi, Y. Bando, M. Mitome, C. Tang, and D. Golberg: Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C 114, 4340–4344 (2010).

    Article  CAS  Google Scholar 

  29. C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, and D. Golberg: Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 19, 1857–1862 (2009).

    Article  CAS  Google Scholar 

  30. C.Y. Zhi, Y. Bando, W.L. Wang, C.C. Tang, H. Kuwahara, and D. Golberg: Mechanical and thermal properties of polymethyl methacrylate-BN nanotube composites. J. Nanomater. 2008, 642036 (2008).

    Article  Google Scholar 

  31. L. Li, Y. Chen, and Z.H. Stachurski: Boron nitride nanotube reinforced polyurethane composites. Prog. Nat. Sci. 23, 170–173 (2013).

    Article  CAS  Google Scholar 

  32. N.P. Bansal, J.B. Hurst, and S.R. Choi: Boron nitride nanotubes-reinforced glass composites. J. Am. Ceram. Soc. 89, 388–390 (2006).

    Article  CAS  Google Scholar 

  33. S.R. Choi, N.P. Bansal, and A. Garg: Mechanical and microstructural characterization of boron nitride nanotubes-reinforced SOFC seal glass composite. Mater. Sci. Eng., A 460–461, 509–515 (2007).

    Article  CAS  Google Scholar 

  34. D. Lahiri, A. Hadjikhani, C. Zhang, T. Xing, L.H. Li, Y. Chen, and A. Agarwal: Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. Mater. Sci. Eng., A 574, 149–156 (2013).

    Article  CAS  Google Scholar 

  35. S.K. Singhal, A.K. Srivastava, R. Pasricha, and R.B. Mathur: Fabrication of Al-matrix composites reinforced with amino functionalized boron nitride nanotubes. J. Nanosci. Nanotechnol. 11, 5179–5186 (2011).

    Article  CAS  Google Scholar 

  36. M. Yamaguchi, A. Pakdel, C. Zhi, Y. Bando, D.M. Tang, K. Faerstein, D. Shtansky, and D. Golberg: Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. Nanoscale Res. Lett. 8, 3 (2013).

    Article  CAS  Google Scholar 

  37. M. Yamaguchi, J. Bernhardt, K. Faerstein, D. Shtansky, Y. Bando, I.S. Golovin, H-R. Sinning, and D. Golberg: Fabrication and characteristics of melt-spun Al ribbons reinforced with nano/micro-BN phases. Acta Mater. 61, 7604–7615 (2013).

    Article  CAS  Google Scholar 

  38. M. Yamaguchi, F. Meng, K. Firestein, K. Tsuchiya, and D. Golberg: Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Mater. Sci. Eng., A 604, 9–17 (2014).

    Article  CAS  Google Scholar 

  39. R.B. Patel, J. Liu, J. Eng, and Z. Iqbal: One-step CVD synthesis of a boron nitride nanotube–iron composite. J. Mater. Res. 26, 1332 (2011).

    Article  CAS  Google Scholar 

  40. D. Lahiri, V. Singh, L.H. Li, T. Xing, S. Seal, Y. Chen, and A. Agarwal: Insight into reactions and interface between boron nitride nanotube and aluminum. J. Mater. Res. 27, 2760–2770 (2012).

    Article  CAS  Google Scholar 

  41. M.M.H. Bhuiyan, L.H. Li, J. Wang, P. Hodgson, and Y. Chen: Interfacial reactions between titanium and boron nitride nanotubes. Scr. Mater. 127, 108–112 (2017).

    Article  CAS  Google Scholar 

  42. Y. Chen, J. Fitz Gerald, J.S. Williams, and S. Bulcock: Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 299, 260–264 (1999).

    Article  CAS  Google Scholar 

  43. D. Lahiri, F. Rouzand, T. Richard, A.K. Keshri, S.R. Bakshi, L. Kos, and A. Agarwal: Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6, 3524–3533 (2010).

    Article  CAS  Google Scholar 

  44. H.B. Feng, D.C. Jia, Y. Zhou, and J. Huo: Microstructural characterisation of in situ TiB/Ti matrix composites prepared by mechanical alloying and hot pressing. Mater. Sci. Technol. 20, 1205–1210 (2004).

    Article  CAS  Google Scholar 

  45. H. Feng, Y. Zhou, D. Jia, and Q. Meng: Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Compos. Sci. Technol. 64, 2495–2500 (2004).

    Article  CAS  Google Scholar 

  46. S.C. Tjong and Y-W. Mai: Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68, 583–601 (2008).

    Article  CAS  Google Scholar 

  47. X. Feng, J. Sui, and W. Cai: Processing of multi-walled carbon nanotube-reinforced TiNi composites by hot pressed sintering. J. Compos. Mater. 45, 1553–1557 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from the Australian Research Council under Discovery, Linkage project and Deakin Ph.D. scholarship is gratefully acknowledged. Authors thank John Vella for assisting the property testing. The present work was carried out with the support of the Deakin Advanced Characterisation Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, M.M.H., Wang, J., Li, L.H. et al. Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance. Journal of Materials Research 32, 3744–3752 (2017). https://doi.org/10.1557/jmr.2017.345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.345

Navigation