Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 17, 2016

The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms

  • Sergej Springer , Niclas Heidenreich , Norbert Stock , Leo van Wüllen , Klaus Huber , Stefano Leoni and Michael Wiebcke EMAIL logo

Abstract

In this report, we summarize our theoretical and experimental investigations on the zeolitic imidazolate framework (ZIF) system [Zn(dcim)2] (dcim=4,5-dichloroimidazolate) that have been published recently. These comprise: (1) a theoretical study on hypothetical conformational [Zn(dcm)2]-SOD polymorphs with the same underlying sodalite (SOD) topology but distinct dcim linker orientations, (2) a synthetic work that resulted in the experimental realization of the most stable predicted (trigonal) SOD-type framework conformer and improved synthetic protocols for a previously discovered cubic SOD-type material, (3) a detailed structural analysis of the trigonal and cubic SOD-type materials, (4) a comparative characterization of the SOD-type materials by gas physisorption measurements, (5) a synthetic work that resulted in the discovery of a complete series of intermediate frameworks with the trigonal and cubic SOD-type materials as the end members, and (6) time-resolved in-situ light and stopped-flow synchrotron small-angle and wide-angle X-ray scattering experiments on the rapid crystallization of the RHO-type polymorph (ZIF-71). In addition, we report as yet unpublished work, concerning time-resolved in-situ angular-dispersive synchrotron X-ray diffraction experiments on RHO-/SOD-type phase selection via the coordination modulation approach during competitive formation of the RHO-type and SOD-type materials.

Acknowledgments

Provision of beamtime at beamline P07 by DESY and HZG is gratefully acknowledged. We thank Norbert Schell and Uta Rütt for support at the beamline during the in-situ experiments. Financial support by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the priority program 1415 (“Crystalline Non-Equilibrium Phases”) is gratefully acknowledged.

References

[1] C. A. Schröder, S. Saha, K. Huber, S. Leoni, M. Wiebcke, Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms. Z. Kristallogr.2014, 229, 807.10.1515/zkri-2014-1788Search in Google Scholar

[2] J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev.2012, 112, 1001.10.1021/cr200139gSearch in Google Scholar PubMed

[3] A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.2010, 43, 58.10.1021/ar900116gSearch in Google Scholar PubMed

[4] J.-F. Yao, H.-T. Wang, Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem. Soc. Rev.2014, 43, 4470.10.1039/C3CS60480BSearch in Google Scholar

[5] D. Farrusseng, S. Aguado, C. Pinel, Metal-organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed.2009, 48, 7502.10.1002/anie.200806063Search in Google Scholar PubMed

[6] W. Cai, C.-C. Chu, G. Liu, Y.-X. Wáng, Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small2015, 11, 4806.10.1002/smll.201500802Search in Google Scholar PubMed

[7] B.-L. Chen, Z.-X. Yang, Y.-Q. Zhu, Y. D. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem A2014, 2, 16811.10.1039/C4TA02984DSearch in Google Scholar

[8] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs), Routes to various MOF topologies, morphologies, and composites. Chem. Soc. Rev.2012, 112, 933.10.1021/cr200304eSearch in Google Scholar PubMed

[9] M. G. Goesten, F. Kapteijn, J. Gascon, Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal-organic frameworks. CrystEngComm2013, 15, 9249.10.1039/c3ce41241eSearch in Google Scholar

[10] I. A. Baburin, S. Leoni, The energy landscape of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring. J. Mater. Chem.2012, 22, 10152.10.1039/C2JM15629FSearch in Google Scholar

[11] R. Galvelis, B. Slater, R. Chaudret, B. Creton, C. Nieto-Draghi, C. Mellot-Draznieks, Impact of functionalized linkers on the energy landscape of ZIFs. CrystEngComm2013, 15, 9603.10.1039/c3ce41103fSearch in Google Scholar

[12] J. A. Gee, D. S. Sholl, Characterization of the thermodynamic stability of solvated metal-organic polymorphs using molecular simulations. J. Phys. Chem. C2013, 117, 20636.10.1021/jp405774eSearch in Google Scholar

[13] L. Bouessel du Bourg, A. U. Ortiz, A. Boutin, F.-X. Coudert, Thermal and mechanical stability of zeolitic imidazolate framework polymorphs. APL Mater.2014, 2, 124110.10.1063/1.4904818Search in Google Scholar

[14] I. H. Lim, W. Schrader, F. Schüth: Insights into the molecular assembly of zeolitic imidazolate frameworks by ESI-MS. Chem. Mater.2015, 27, 3088.10.1021/acs.chemmater.5b00614Search in Google Scholar

[15] J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater.2011, 23, 2130.10.1021/cm103571ySearch in Google Scholar

[16] J. P. Patterson, P. Abellan, M. S. Denny Jr., C. Park, N. D. Browning, S. M. Cohen, J. E. Evans, N. C. Gianneschi, Observing the growth of metal-organic frameworks by in situ liguid cell transmission electron microscopy. J. Am. Chem. Soc.2015, 137, 7322.10.1021/jacs.5b00817Search in Google Scholar PubMed

[17] J. Cravillon, C. A. Schröder, R. Nayuk, J. Gummel, K. Huber, M. Wiebcke, Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-Ray scattering. Angew. Chem. Int. Ed.2011, 50, 8067.10.1002/anie.201102071Search in Google Scholar PubMed

[18] Z.-X. Low, J.-F. Yao, Q. Liu, M. He, Z.-Y. Wang, A. K. Suresh, J. Bellare, H.-T. Wang, Crystal transformation in a Zeolitic-Imidazolate framework. Cryst. Growth Des.2014, 14, 6589.10.1021/cg501502rSearch in Google Scholar

[19] K. Self, M. Telfer, H. F. Greer, W. Z. Zhou, Revered crystal growth of RHO zeolitic imidazolate framework (ZIF). Chem.- Eur. J.2015, 21, 19090.10.1002/chem.201503437Search in Google Scholar PubMed PubMed Central

[20] S. Springer, I. A. Baburin, T. Heinemeyer, J. G. Schiffmann, L. van Wüllen, S. Leoni, M. Wiebcke, A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder. CrystEngComm2016, 18, 2477.10.1039/C6CE00312ESearch in Google Scholar

[21] S. Saha, S. Springer, M. E. Schweinefuß, D. Pontoni, M. Wiebcke, K. Huber, Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering. Cryst. Growth Des.2016, 16, 2002.10.1021/acs.cgd.5b01594Search in Google Scholar

[22] M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, M. Wiebcke, Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Trans.2014, 43, 3528.10.1039/c3dt52992dSearch in Google Scholar PubMed

[23] R. Sabatini, T. Gorni, S. de Gironcoli, Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B: Condens. Matter2013, 87, 041108.10.1103/PhysRevB.87.041108Search in Google Scholar

[24] International Zeolite Association, Database of Zeolite structures. http://www.iza-structure.org/databases.Search in Google Scholar

[25] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science2008, 319, 939.10.1126/science.1152516Search in Google Scholar PubMed

[26] W. Depmeier, The sodalite family – a simple but versatile framework structure. Rev. Mineral. Geochem.2005, 57, 203.10.1515/9781501509513-007Search in Google Scholar

[27] X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed.2006, 45, 1557.10.1002/anie.200503778Search in Google Scholar PubMed

[28] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Nat. Acad. Sci. USA2006, 103, 10186.10.1073/pnas.0602439103Search in Google Scholar PubMed PubMed Central

[29] S. A. Moggach, T. D. Bennett, A. K. Cheetham, The effect of pressure on ZIF-8: Increasing pore size with pressure and the formation of a high-pressure Phase at 1.47 GPa. Angew. Chem. Int. Ed.2009, 48, 7087.10.1002/anie.200902643Search in Google Scholar PubMed

[30] D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, T. Düren, Opening the gate: framework fexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc.2011, 133, 8900.10.1021/ja202154jSearch in Google Scholar PubMed

[31] J.-P. Zhang, A.-X. Zhu, X.-M. Chen, Single-crystal X-ray diffraction and Raman spectroscopy studies of the isobaric N2 adsorption in SOD-type metal-organic zeolites. Chem. Commun.2012, 48, 11395.10.1039/c2cc35544bSearch in Google Scholar PubMed

[32] X-C. Huang, J.-P. Zhang, X.-M. Chen, [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chin. Sci. Bull.2003, 48, 1531.10.1360/03wb0079Search in Google Scholar

[33] P. Zhao, G. I. Lampronti, G. O. Lloyd, M. T. Wharmby, S. Facq, A. K. Cheetham, S.Redfern, phase transitions in zeolitic imidazolate framework 7: the importance of framework flexibility and guest-induced instability. Chem. Mater.2014, 26, 1767.10.1021/cm500407fSearch in Google Scholar

[34] Y. Du, B. Wooler, M. Nines, P. Kortunov, C. S. Pauer, J. Zengel, S. C. Weston, P. I. Ravikovitch, New high- and low-temperature phase changes of ZIF-7: elucidation and prediction of the thermodynamics of transitions. J. Am. Chem. Soc.2015, 137, 13603.10.1021/jacs.5b08362Search in Google Scholar

[35] K. Knorr, C. M. Braunbarth, G. van der Goor, P. Behrens, C. Griewatsch, W. Depmeier, High-pressure study on dioxolane silica sodalite (C3H6O2)2[Si12O24] – neutron and X-ray powder diffraction experiments. Solid State Commun.2000, 503, 114.10.1016/S0038-1098(99)00516-5Search in Google Scholar

[36] R. S. P. King, S. E. Dann, M. R. J. Elsegood, P. F. Kelly, R. J. Mortimer, The synthesis, full characterisation and utilisation of template-free silica sodalite, a novel polymorph of silica. Chem.- Eur. J.2009, 15, 5441.10.1002/chem.200802551Search in Google Scholar PubMed

[37] F.-X. Coudert, Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater.2015, 27, 1905.10.1021/acs.chemmater.5b00046Search in Google Scholar

[38] I. A. Baburin, S. Leoni, Modelling polymorphs of metal-organic frameworks: a systematic study of diamondoid zinc imidazolates. CrystEngComm2010, 12, 2809.10.1039/b926717dSearch in Google Scholar

[39] A.-X. Zhu, R.-B. Lin, X.-L. Qi, Y. Liu, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous Mesoporous Mater.2012, 157, 42.10.1016/j.micromeso.2011.11.033Search in Google Scholar

[40] D. S. Sholl, R. P. Lively, Defects in metal-organic frameworks: challenge or opportunity? J. Phys. Chem. Lett.2015, 6, 3437.10.1021/acs.jpclett.5b01135Search in Google Scholar PubMed

[41] C. Zhang, C. Han, D. S. Sholl, J. R. Schmidt, Computational characterization of defects in metal-organic frameworks: spontaneous and water-induced point defects in ZIF-8. J. Phys. Chem. Lett.2016, 7, 459.10.1021/acs.jpclett.5b02683Search in Google Scholar PubMed

[42] Z. Fang, B. Bueken, D. E. de Vos, R. A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed.2015, 54, 7234.10.1002/anie.201411540Search in Google Scholar PubMed PubMed Central

[43] S. Aguado, G. Bergeret, M. P. Titus, V. Moizan, C. Nieto-Draghi, N. Bats, D. Farrusseng, Guest-induced gate-opening of a zeolitic imidazolate framework. New J. Chem.2011, 35, 546.10.1039/C0NJ00836BSearch in Google Scholar

[44] M. T. Wharmby, S. Henke, T. D. Bennett, S. R. Bajpe, I. Schwedler, S. P. Thompson, F. Gozzo, P. Simoncic, C. Mellot-Draznieks, H. Tao, Y. Yue, A. K. Cheetha, Extreme flexibility in a zeolitic imidazolate framework: porous to dense phase transition in desolvated ZIF-4. Angew. Chem. Int. Ed.2015, 54, 6447.10.1002/anie.201410167Search in Google Scholar PubMed

[45] N. Pienack, W. Bensch, In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed.2011, 50, 2014.10.1002/anie.201001180Search in Google Scholar PubMed

[46] E. Antonova, B. Seidlhofer, J. Wang, M. Hinz, W. Bensch, Controlling Nucleation and crystal growth of a distinct polyoxovanadate cluster: an in situ energy dispersive X-ray diffraction study under solvothermal conditions. Chem. Eur. J.2012, 18, 15316.10.1002/chem.201202107Search in Google Scholar PubMed

[47] H. H.-M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare, R. I. Walton, In situ observation of successive crystallizations and metastable intermediates in the formation of metal-organic frameworks. Angew. Chem. Int. Ed.2016, 55, 2012.10.1002/anie.201508763Search in Google Scholar PubMed

[48] K. M. O. Jensen, C. Tyrsted, M. Bremholm, B. B. Iversen, In situ studies of solvothermal synthesis of energy materials. ChemSusChem2014, 7, 1594.10.1002/cssc.201301042Search in Google Scholar PubMed

[49] S. Springer, A. Satalov, J. Lippke, M. Wiebcke, Nanocrystals and nanomaterials of isoreticular zeolitic imidazoate frameworsk. Microporous Mesoporous Mater.2015, 216, 161.10.1016/j.micromeso.2015.03.020Search in Google Scholar

[50] J.-P. Zhang, Y.-Y. Lin, X.-C. Huang, X.-M. Chen, Supramolecular isomerism within three-dimensional 3-connected nets: unusual synthesis and characterization of trimorphic copper(I) 3,5-dimethyl-1,2,4-triazolate. Dalton Trans.2005, 3681.10.1039/b509615dSearch in Google Scholar PubMed

[51] X.-C. Huang, J.-P. Zhang, X.-M. Chen, One-dimensional supramolecular isomerism of copper(I) and silver(I) imidazolates based on the ligand orientation. Cryst. Growth Des.2006, 5, 1194.10.1021/cg060048+Search in Google Scholar

[52] J.-P. Zhang, X.-C. Huang, X.-M. Chen, Supramolecular isomerism in coordination polymers. Chem. Sov. Rev.2009, 38, 2385.10.1039/b900317gSearch in Google Scholar PubMed

[53] A. F. Gualtieri, Synthesis of sodium zeolites from natural halloysite. Phys. Chem. Miner.2001, 28, 719.10.1007/s002690100197Search in Google Scholar

[54] J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater.2009, 21, 1410.10.1021/cm900166hSearch in Google Scholar

[55] S. R. Venna, J. B. Jasinski, M. A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc.2010, 132, 18030.10.1021/ja109268mSearch in Google Scholar PubMed

[56] T. Hikov, C. A. Schröder, J. Cravillon, M. Wiebcke, K. Huber, In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys. Chem. Chem. Phys.2012, 14, 511.10.1039/C1CP22855BSearch in Google Scholar PubMed

[57] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Häusermann, Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res.1996, 14, 235.10.1080/08957959608201408Search in Google Scholar

Received: 2016-6-2
Accepted: 2016-8-15
Published Online: 2016-9-17
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2016-1968/html
Scroll to top button