Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 19, 2019

Comparison of lipidic carrier systems for integral membrane proteins – MsbA as case study

  • Dominique-Maurice Kehlenbeck , Inokentijs Josts , Julius Nitsche , Sebastian Busch , V. Trevor Forsyth and Henning Tidow ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Membrane protein research suffers from the drawback that detergents, which are commonly used to solubilize integral membrane proteins (IMPs), often lead to protein instability and reduced activity. Recently, lipid nanodiscs (NDs) and saposin-lipoprotein particles (Salipro) have emerged as alternative carrier systems that keep membrane proteins in a native-like lipidic solution environment and are suitable for biophysical and structural studies. Here, we systematically compare nanodiscs and Salipros with respect to long-term stability as well as activity and stability of the incorporated membrane protein using the ABC transporter MsbA as model system. Our results show that both systems are suitable for activity measurements as well as structural studies in solution. Based on our results we suggest screening of different lipids with respect to activity and stability of the incorporated IMP before performing structural studies.

Acknowledgements

We thank Katharina Veith for technical assistance, Jens Frauenfeld (Salipro Biotech AB), Christian Löw and Franz Hagn for plasmids and advice/protocols and members of the Tidow lab for helpful discussions. This work is partially based upon experiments performed at the SANS-1 instrument operated by HZG and FRM II at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. The authors gratefully acknowledge the financial support provided by HZG to perform the neutron scattering measurements at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. We acknowledge access to the Sample Preparation and Characterization (SPC) Facility of EMBL, Hamburg. This work was funded by the Cluster of Excellence ‘The Hamburg Centre for Ultrafast Imaging’ of the Deutsche Forschungsgemeinschaft (DFG) – EXC 1074 – project ID 194651731.

  1. Conflict of interest statement: The authors declare no competing financial interests.

References

Arana, M.R., Fiori, M.C., and Altenberg, G.A. (2019). Functional and structural comparison of the ABC exporter MsbA studied in detergent and reconstituted in nanodiscs. Biochem. Biophys. Res. Commun. 512, 448–452.10.1016/j.bbrc.2019.03.069Search in Google Scholar

Autzen, H.E., Myasnikov, A.G., Campbell, M.G., Asarnow, D., Julius, D., and Cheng, Y. (2018). Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359, 228–232.10.1126/science.aar4510Search in Google Scholar

Baginski, E.S., Epstein, E., and Zak, B. (1975). Review of phosphate methodologies. Ann. Clin. Lab. Sci. 5, 399–416.Search in Google Scholar

Barniol-Xicota, M. and Verhelst, S.H.L. (2018). Stable and functional rhomboid proteases in lipid nanodiscs by using diisobutylene/maleic acid copolymers. J. Am. Chem. Soc. 140, 14557–14561.10.1021/jacs.8b08441Search in Google Scholar

Bayburt, T.H. and Sligar, S.G. (2010). Membrane protein assembly into Nanodiscs. FEBS Lett. 584, 1721–1727.10.1016/j.febslet.2009.10.024Search in Google Scholar

Bersch, B., Dorr, J.M., Hessel, A., Killian, J.A., and Schanda, P. (2017). Proton-detected solid-state NMR spectroscopy of a zinc diffusion facilitator protein in native nanodiscs. Angew. Chem. Int. Ed. Engl. 56, 2508–2512.10.1002/anie.201610441Search in Google Scholar

Bezanilla, F. (2008). How membrane proteins sense voltage. Nat. Rev. Mol. Cell Biol. 9, 323–332.10.1038/nrm2376Search in Google Scholar

Breyton, C., Gabel, F., Lethier, M., Flayhan, A., Durand, G., Jault, J.M., Juillan-Binard, C., Imbert, L., Moulin, M., Ravaud, S., et al. (2013). Small angle neutron scattering for the study of solubilised membrane proteins. Eur. Phys. J. E Soft. Matter. 36, 71.10.1140/epje/i2013-13071-6Search in Google Scholar

Broecker, J., Eger, B.T., and Ernst, O.P. (2017). Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25, 384–392.10.1016/j.str.2016.12.004Search in Google Scholar

Champeil, P., Orlowski, S., Babin, S., Lund, S., le Maire, M., Moller, J., Lenoir, G., and Montigny, C. (2016). A robust method to screen detergents for membrane protein stabilization, revisited. Anal. Biochem. 511, 31–35.10.1016/j.ab.2016.07.017Search in Google Scholar

Chifflet, S., Torriglia, A., Chiesa, R., and Tolosa, S. (1988). A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal. Biochem. 168, 1–4.10.1016/0003-2697(88)90002-4Search in Google Scholar

Denisov, I.G. and Sligar, S.G. (2016). Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23, 481–486.10.1038/nsmb.3195Search in Google Scholar PubMed PubMed Central

Denisov, I.G., Grinkova, Y.V., Lazarides, A.A., and Sligar, S.G. (2004). Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487.10.1021/ja0393574Search in Google Scholar PubMed

Etzkorn, M., Raschle, T., Hagn, F., Gelev, V., Rice, A.J., Walz, T., and Wagner, G. (2013). Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21, 394–401.10.1016/j.str.2013.01.005Search in Google Scholar PubMed PubMed Central

Flayhan, A., Mertens, H.D.T., Ural-Blimke, Y., Martinez Molledo, M., Svergun, D.I., and Low, C. (2018). Saposin lipid nanoparticles: a highly versatile and modular tool for membrane protein research. Structure 26, 345–355.10.1016/j.str.2018.01.007Search in Google Scholar PubMed PubMed Central

Frauenfeld, J., Loving, R., Armache, J.P., Sonnen, A.F., Guettou, F., Moberg, P., Zhu, L., Jegerschold, C., Flayhan, A., Briggs, J.A., et al. (2016). A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Methods 13, 345–351.10.1038/nmeth.3801Search in Google Scholar PubMed PubMed Central

Gattkowski, E., Johnsen, A., Bauche, A., Mockl, F., Kulow, F., Garcia Alai, M., Rutherford, T.J., Fliegert, R., and Tidow, H. (2019). Novel CaM-binding motif in its NudT9H domain contributes to temperature sensitivity of TRPM2. Biochim. Biophys. Acta: Mol. Cell Res. 1866, 1162–1170.10.1016/j.bbamcr.2018.12.010Search in Google Scholar PubMed PubMed Central

Hagn, F., Etzkorn, M., Raschle, T., and Wagner, G. (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135, 1919–1925.10.1021/ja310901fSearch in Google Scholar PubMed PubMed Central

Haswell, E.S., Phillips, R., and Rees, D.C. (2011). Mechanosensitive channels: what can they do and how do they do it? Structure 19, 1356–1369.10.1016/j.str.2011.09.005Search in Google Scholar PubMed PubMed Central

Hilger, D., Masureel, M., and Kobilka, B.K. (2018). Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12.10.1038/s41594-017-0011-7Search in Google Scholar PubMed PubMed Central

Hu, Z., Ho, J.C.S., and Nallani, M. (2017). Synthetic (polymer) biology (membrane): functionalization of polymer scaffolds for membrane proteins. Curr. Opin. Biotechnol. 46, 51–56.10.1016/j.copbio.2016.10.012Search in Google Scholar PubMed

Josts, I., Nitsche, J., Maric, S., Mertens, H.D., Moulin, M., Haertlein, M., Prevost, S., Svergun, D.I., Busch, S., Forsyth, V.T., et al. (2018). Conformational states of ABC transporter MsbA in a lipid environment investigated by small-angle scattering using stealth carrier nanodiscs. Structure 26, 1072–1079.10.1016/j.str.2018.05.007Search in Google Scholar PubMed

Kawai, T., Caaveiro, J.M., Abe, R., Katagiri, T., and Tsumoto, K. (2011). Catalytic activity of MsbA reconstituted in nanodisc particles is modulated by remote interactions with the bilayer. FEBS Lett. 585, 3533–3537.10.1016/j.febslet.2011.10.015Search in Google Scholar PubMed

Kiley, P., Zhao, X., Vaughn, M., Baldo, M.A., Bruce, B.D., and Zhang, S. (2005). Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol. 3, e230.10.1371/journal.pbio.0030230Search in Google Scholar PubMed PubMed Central

Knowles, T.J., Finka, R., Smith, C., Lin, Y.P., Dafforn, T., and Overduin, M. (2009). Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131, 7484–7485.10.1021/ja810046qSearch in Google Scholar PubMed

Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., and Svergun, D.I. (2003). PRIMUS: a windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282.10.1107/S0021889803012779Search in Google Scholar

Kuhlbrandt, W. (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13, 89.10.1186/s12915-015-0201-xSearch in Google Scholar PubMed PubMed Central

Lee, S.C., Knowles, T.J., Postis, V.L., Jamshad, M., Parslow, R.A., Lin, Y.P., Goldman, A., Sridhar, P., Overduin, M., Muench, S.P., et al. (2016). A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat. Protoc. 11, 1149–1162.10.1038/nprot.2016.070Search in Google Scholar PubMed

Lyons, J.A., Boggild, A., Nissen, P., and Frauenfeld, J. (2017). Saposin-lipoprotein scaffolds for structure determination of membrane transporters. Methods Enzymol. 594, 85–99.10.1016/bs.mie.2017.06.035Search in Google Scholar PubMed

Miehling, J., Goricanec, D., and Hagn, F. (2018). A split-intein-based method for the efficient production of circularized nanodiscs for structural studies of membrane proteins. ChemBioChem 19, 1927–1933.10.1002/cbic.201800345Search in Google Scholar PubMed

MLZ. (2015). SANS-1: small angle neutron scattering. J. Large-Scale Res. Facilities 1, A10.10.17815/jlsrf-1-32Search in Google Scholar

Nasr, M.L., Baptista, D., Strauss, M., Sun, Z.J., Grigoriu, S., Huser, S., Pluckthun, A., Hagn, F., Walz, T., Hogle, J.M., et al. (2017). Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat. Methods 14, 49–52.10.1038/nmeth.4079Search in Google Scholar PubMed PubMed Central

Neumann, J., Rose-Sperling, D., and Hellmich, U.A. (2017). Diverse relations between ABC transporters and lipids: an overview. Biochim. Biophys. Acta Biomembr. 1859, 605–618.10.1016/j.bbamem.2016.09.023Search in Google Scholar PubMed

Newstead, S. (2017). Recent advances in understanding proton coupled peptide transport via the POT family. Curr. Opin. Struct. Biol. 45, 17–24.10.1016/j.sbi.2016.10.018Search in Google Scholar PubMed PubMed Central

Nitsche, J., Josts, I., Heidemann, J., Mertens, H.D., Maric, S., Moulin, M., Haertlein, M., Busch, S., Forsyth, V.T., Svergun, D.I., et al. (2018). Structural basis for activation of plasma-membrane Ca(2+)-ATPase by calmodulin. Commun. Biol. 1, 206.10.1038/s42003-018-0203-7Search in Google Scholar PubMed PubMed Central

Oluwole, A.O., Danielczak, B., Meister, A., Babalola, J.O., Vargas, C., and Keller, S. (2017a). Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer. Angew. Chem. Int. Ed. Engl. 56, 1919–1924.10.1002/anie.201610778Search in Google Scholar PubMed PubMed Central

Oluwole, A.O., Klingler, J., Danielczak, B., Babalola, J.O., Vargas, C., Pabst, G., and Keller, S. (2017b). Formation of lipid-bilayer nanodiscs by diisobutylene/maleic acid (DIBMA) copolymer. Langmuir 33, 14378–14388.10.1021/acs.langmuir.7b03742Search in Google Scholar PubMed

Overington, J.P., Al-Lazikani, B., and Hopkins, A.L. (2006). How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996.10.1038/nrd2199Search in Google Scholar PubMed

Palmgren, M.G. and Nissen, P. (2011). P-type ATPases. Annu. Rev. Biophys. 40, 243–266.10.1146/annurev.biophys.093008.131331Search in Google Scholar PubMed

Park, S.H., Berkamp, S., Cook, G.A., Chan, M.K., Viadiu, H., and Opella, S.J. (2011). Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50, 8983–8985.10.1021/bi201289cSearch in Google Scholar PubMed PubMed Central

Picard, M., Dahmane, T., Garrigos, M., Gauron, C., Giusti, F., le Maire, M., Popot, J.L., and Champeil, P. (2006). Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45, 1861–1869.10.1021/bi051954aSearch in Google Scholar PubMed

Popot, J.L., Berry, E.A., Charvolin, D., Creuzenet, C., Ebel, C., Engelman, D.M., Flotenmeyer, M., Giusti, F., Gohon, Y., Hong, Q., et al. (2003). Amphipols: polymeric surfactants for membrane biology research. Cell. Mol. Life Sci. 60, 1559–1574.10.1007/s00018-003-3169-6Search in Google Scholar

Raetz, C.R., Reynolds, C.M., Trent, M.S., and Bishop, R.E. (2007). Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 76, 295–329.10.1146/annurev.biochem.76.010307.145803Search in Google Scholar

Rask-Andersen, M., Almen, M.S., and Schioth, H.B. (2011). Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590.10.1038/nrd3478Search in Google Scholar

Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., and Sligar, S.G. (2009). Chapter 11 – reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231.10.1016/S0076-6879(09)64011-8Search in Google Scholar

Seddon, A.M., Curnow, P., and Booth, P.J. (2004). Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666, 105–117.10.1016/j.bbamem.2004.04.011Search in Google Scholar PubMed

Sun, C., Benlekbir, S., Venkatakrishnan, P., Wang, Y., Hong, S., Hosler, J., Tajkhorshid, E., Rubinstein, J.L., and Gennis, R.B. (2018). Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557, 123–126.10.1038/s41586-018-0061-ySearch in Google Scholar PubMed PubMed Central

Svergun, D.I. (1992). Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503.10.1107/S0021889892001663Search in Google Scholar

Tribet, C., Audebert, R., and Popot, J.L. (1996). Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. U.S.A. 93, 15047–15050.10.1073/pnas.93.26.15047Search in Google Scholar PubMed PubMed Central

Tribet, C., Diab, C., Dahmane, T., Zoonens, M., Popot, J.L., andWinnik, F.M. (2009). Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25, 12623–12634.10.1021/la9018772Search in Google Scholar PubMed

Veith, K., Martinez Molledo, M., Almeida Hernandez, Y., Josts, I., Nitsche, J., Low, C., and Tidow, H. (2017). Lipid-like peptides can stabilize integral membrane proteins for biophysical and structural studies. ChemBioChem 18, 1735–1742.10.1002/cbic.201700235Search in Google Scholar PubMed PubMed Central

Wallin, E. and von Heijne, G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038.10.1002/pro.5560070420Search in Google Scholar PubMed PubMed Central

Wei, C.J., Xu, X., and Lo, C.W. (2004). Connexins and cell signaling in development and disease. Annu. Rev. Cell Dev. Biol. 20, 811–838.10.1146/annurev.cellbio.19.111301.144309Search in Google Scholar PubMed

Yeh, J.I., Du, S., Tortajada, A., Paulo, J., and Zhang, S. (2005). Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase. Biochemistry 44, 16912–16919.10.1021/bi051357oSearch in Google Scholar PubMed

Zhao, X., Nagai, Y., Reeves, P.J., Kiley, P., Khorana, H.G., and Zhang, S. (2006). Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 103, 17707–17712.10.1073/pnas.0607167103Search in Google Scholar PubMed PubMed Central

Zhou, Z., White, K.A., Polissi, A., Georgopoulos, C., and Raetz, C.R. (1998). Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273, 12466–12475.10.1074/jbc.273.20.12466Search in Google Scholar PubMed

Zoonens, M. and Popot, J.L. (2014). Amphipols for each season. J. Membr. Biol. 247, 759–796.10.1007/s00232-014-9666-8Search in Google Scholar PubMed PubMed Central

Received: 2019-02-26
Accepted: 2019-05-15
Published Online: 2019-06-19
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0171/html
Scroll to top button