Skip to main content
Log in

Use of genetic knockouts to modulate disease expression in a murine model of lupus, MRL/Ipr mice

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

MRL-MPJ Fas1pr (MRL/lpr) mice are a prototypic murine model for lupus characterized by an accelerated autoimmune syndrome. Disease begins as early as 8-wk-of-age in these animals with polyclonal B cell activation and elevated levels of serum IgM. By 12 to 16-wk-or-age MRL/lpr mice begin to produce a variety of autoantibodies including anti-dsDNA and anti-ss-DNA antibodies. From 16 to 24 wk, MRL/lpr mice develop proliferative immune complex mediated glomerulonephritis, vasculitis, arthritis, and massive lymphadenopathy that results in ren al failure and death in 50% of the mice by 24-wk-of-age. This review will discuss several different genetic knockout experimental approaches used to study disease expression in MRL/lpr mice including various approaches in our laboratory aimed at autoantibody (Ab) production and inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pollard KM, Pearson DL, Hultman P, Hildebrandt B, Kono DH: Lupusprone miceas models to study xenobiotic-induced acceleration of systemic autoimmunity. Environ Health Perspect 1999;107:729–735.

    Article  PubMed  Google Scholar 

  2. Theofilopoulos AN, Kono DH: The genes of systemic autoimmunity. Proc Assoc Am Physicians 1999; 111:228–240.

    Article  PubMed  CAS  Google Scholar 

  3. Mohan C, Morel L, Yang P, et al.: Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest 1999; 103:1685–1695.

    PubMed  CAS  Google Scholar 

  4. Couser WG, Nangaku M, Shankland SJ, Johnson RJ: Molecular Mechanisms of Experimental Glomerulonephritis—an Overview. Nephrology 1997;3: S633-S637.

    Article  CAS  Google Scholar 

  5. Vidal S, Kono DH, Theofilopoulos AN: Loci predisposing to autoimmunity in MRL-Faslprand C57BL/6-Faslpr mice. J Clin Invest 1998;101:696–702.

    PubMed  CAS  Google Scholar 

  6. Madaio MP, Shlomchik MJ: Emerging concepts regarding B cells and autoantibodies in murine lupus nephritis. B cells have multiple roles: all autoantibodies are not equal [editorial]. J Am Soc Nephrol 1996;7:387–396.

    PubMed  CAS  Google Scholar 

  7. Chan O, Madaio MP, Shlomchik MJ: The roles of B cells in MRL/lpr murine lupus. Ann NY Acad Sci 1997;815:75–87.

    Article  PubMed  CAS  Google Scholar 

  8. Zhou T, Bluethmann H, Eldridge J, Brockhaus M, Berry K, Mountz JD: Abnormal thymocyte development and production of autoreactive T cells in T cell receptor transgenic autoimmune mice. J Immunol 1991;147:466–474.

    PubMed  CAS  Google Scholar 

  9. Kashem A, Endoh M, Yano N, Yamauchi F, Nomoto Y, Sakai H: Expression of inducible-NOS in human glomerulo nephritis: the possible source is infiltrating monocytes/macrophages. Kidney Int 1996;50:392–399.

    Article  PubMed  CAS  Google Scholar 

  10. Lemay S, Mao C, Singh AK: Cytokine gene expression in the MRL/Ipr model of lupus nephritis. Kidney Int 1996;50:85–93.

    Article  PubMed  CAS  Google Scholar 

  11. Ooi BS, Cohen DJ, Veis JH: Biology of the mesangial cell in giomerulonephritis—role of cytokines. Proceedings of the Society for Experimental Biology & Medicine 1996;213:230–237.

    CAS  Google Scholar 

  12. Beck KF, Eberhardt W, Frank S, et al., Inducible NO synthase: role in cellular signalling. J Exp Biol 1999;202:645–653.

    PubMed  CAS  Google Scholar 

  13. Cirino G: Multiple controls in inflammation. Extracellular and intracellular phospholipase A2, inducible and constitutive cyclo-oxygenase, and inducible nitric oxidesynthase. Biochem. Pharmacol. 1998;55:105–111.

    Article  PubMed  CAS  Google Scholar 

  14. Theofilopoulos AN, Dixon FJ: Murine models of systemic lupus erythematosus. Adv Immunol 1985;37:269–390.

    PubMed  CAS  Google Scholar 

  15. Madaio MP: The role of autoantibodies in the pathogenesis of lupus nephritis. Semin Nephrol 1999;19: 48–56.

    PubMed  CAS  Google Scholar 

  16. Vargas MT, Gustilo K, D'Andrea DM, Kalluri R, Foster MH, Madaio MP: Structural features of nephrito genic lupus autoantibodies. Methods 1997;11:62–69.

    Article  PubMed  CAS  Google Scholar 

  17. Craft J: Antibodies to snRNPs in systemic lupus erythematosus. Rheum Dis Clin North Am 1992; 18:311–335.

    PubMed  CAS  Google Scholar 

  18. Chen YC, Ye YL, Chiang BL: Establishment and characterization of cloned CD4- CD8-alphabeta-T cellreceptor (TCR)-bearing autoreactive T cells from autoimmune NZB x NZW F1 mice. Clin Exp Immunol 1997;108:52–57.

    Article  PubMed  CAS  Google Scholar 

  19. Schwarting A, Tesch G, Kinoshita K, Maron R, Weiner HL, Kelley VR: IL-12 drives IFN-gamma-dependent autoimmune kidney disease in MRL-Fas(lpr) mice. J Immunol 1999;163:6884–6891.

    PubMed  CAS  Google Scholar 

  20. Watson ML, Rao JK, Gilkeson GS, et al.: Genetic analysis of MRL-Iprmice: relationship of the Fasapoptosis gene to disease manifestations and renal diseasemodifying loci. J Exp Med 1992; 176:1645–1656.

    Article  PubMed  CAS  Google Scholar 

  21. Dang-Vu AP, Pisetsky DS, Weinberg JB: Functional alterations of macrophages in autoimmune MRL-Ipr/lpr mice. J Immunol 1987;138:1757–1761.

    PubMed  CAS  Google Scholar 

  22. Perkins DL, Listman JA, Marshak-Rothstein A, et al.: Restriction of the TCR repertoire inhibits the development of memory T cellsand prevents autoimmunity in lpr mice. J Immunol 1996;156:4961–4968.

    PubMed  CAS  Google Scholar 

  23. Boswell JM, Yui MA, Burt DW, Kelley VE: Increased tumornecrosis factor and IL-1 beta gene expression in the kidneys of mice with tupus nephritis. J Immunol 1988;141:3050–3054.

    PubMed  CAS  Google Scholar 

  24. Liu YJ, Ooi BS: Responses of mesangial cells of autommune mice to cytokines. J Immunol 1993;151:2247–2251.

    PubMed  CAS  Google Scholar 

  25. Craft J, Peng S, Fujii T, Okada M, Fatenejad S: Autoreactive T cells in murine lupus: origins and roles in autoantibody production. Immunol Res 1999;19:245–257.

    PubMed  CAS  Google Scholar 

  26. Peng SL, Moslehi J, Craft J: Roles of interferon-gamma and interleukin-4 in murine lupus. J Clin Invest 1997;99:1936–1946.

    PubMed  CAS  Google Scholar 

  27. Andrews BS, Eisenberg RA, Theofilopoulos AN, et al.: Spontaneous murine tupus-likesyndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 1978;148:1198–1215.

    Article  PubMed  CAS  Google Scholar 

  28. Mountz JD, Zhou T, Fldridge J, Berry K, Bluthmann H: Transgenic rearranged T cell receptor gene inhibits lymphadenopathy and accumulation of CD4-CD8-B220+T cells in lpr/lpr mice. J Exp Med 1990;172:1805–1817.

    Article  PubMed  CAS  Google Scholar 

  29. Chesnutt MS, Finck BK, Killeen N, Connolly MK, Goodman H, Wofsy D: Enhanced lymphopro-liferation and diminished autoimmunity in CD4-deficient MRL/lpr mice. Clin Immunol Immunopathol 1998;87:23–32

    Article  PubMed  CAS  Google Scholar 

  30. Peng SL, Fatenejad S, Craft J: Induction of nonpathologic, humoral auto immunity in lupus-prone mice by a class II-restricted, transgenic alpha beta T cell. Separation of auto antigen-specific and-nonspecific help. J Immunol 1996;157:5225–5230.

    PubMed  CAS  Google Scholar 

  31. Germain RN, Margulies DH: The biochemistry and cell biology of antigen processing and presentation. Ann Rev Immunol 1993;11: 403–450.

    Article  CAS  Google Scholar 

  32. Peng SL, Madaio MP, Hayday AC, Craft J: Propagation and regulation of systemic autoimmunity by gammadelta T cells. J Immunol 1996; 157:5689–5698.

    PubMed  CAS  Google Scholar 

  33. Peng SL, Madaio MP, Hughes DP, et al.: Murine lupus in the absence of alpha beta T cells. J Immunol 1996;156:4041–4049.

    PubMed  CAS  Google Scholar 

  34. Peng SL, McNiff JM, Madaio MP, et al. alpha beta T cell regulation and CD40 ligand dependence in murine systemic autoimmunity. J Immunol 1997;158:2464–2470.

    PubMed  CAS  Google Scholar 

  35. Peng SL, Craft J: T cells in murine lupus: propagation and regulation of disease. Mol Biol Rep 1996; 23:247–251.

    Article  PubMed  CAS  Google Scholar 

  36. Liang B, Kashgarian MJ, Sharpe AH, Mamula MJ: Autoantibody responses and pathology regulated by B7-1 and B7-2 costimulation in MRL/lpr lupus. J Immunol 2000; 165:3436–3443.

    PubMed  CAS  Google Scholar 

  37. Liang B, Gee RJ, Kashgarian MJ, Sharpe AH, Mamula MJ: B7 costimulation in the development of lupus: autoimmunity arises either in the absence of B7.1/B7.2 or in the presence of anti-b7.1/B7.2 blocking antibodies. J Immunol 1999;163:2322–2329.

    PubMed  CAS  Google Scholar 

  38. Kinoshita K, Tesch G, Schwarting A, Maron R, Sharpe AH, Kelley VR: Costimulation by B7-1 and B7-2 is required for autoimmune disease in MRL-Faslpr mice. J Immunol 2000;164:6046–6056.

    PubMed  CAS  Google Scholar 

  39. Tada Y, Nagasawa K, Ho A, et al.: Role of the costimulatory molecule CD28 in the development of lupus in MRL/lpr mice. J Immunol 1999;163:3153–3159.

    PubMed  CAS  Google Scholar 

  40. Chan OT, Madaio MP, Shlomchik MJ: B cells are required for lupus nephritis in the polygenic, Fasintact MRL model of systemic autoimmunity. J Immunol 1999; 163:3592–3596.

    PubMed  CAS  Google Scholar 

  41. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D: The role of B cells in lpr/lpr-induced auto-immunity. J Exp Med 1994;180: 1295–1306.

    Article  PubMed  CAS  Google Scholar 

  42. Chan OT, Madaio MP, Shlomchik MJ: The central and multiple roles of B cells in lupus pathogenesis. Immunol Rev 1999;169:107–121.

    Article  PubMed  CAS  Google Scholar 

  43. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ: A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 1999;189:1639–1648.

    Article  PubMed  CAS  Google Scholar 

  44. Lindqvist AK, Alarcon-Riquelme ME: The genetics of systemic lupusery thematosus. Scan J Immunol 1999;50:562–571.

    Article  CAS  Google Scholar 

  45. Ibou-Zekri N, Vyse TJ, Rozzo SJ, et al.: MHC-linked control of murine SLE. Current Topics in Microbiology & Immunology 1999;246:275–280; discussion 281.

    Google Scholar 

  46. Fong KY, Boey ML: The genetics of systemic lupuserythematosus. Ann Acad Med Singapore 1998; 27:42–46.

    PubMed  CAS  Google Scholar 

  47. Jevnikar AM, Grusby MJ, Glimcher LH: Prevention of nephritis in major histocompatibility complex class II-deficient MRL-lpr mice. J Exp Med 1994;179:1137–1143.

    Article  PubMed  CAS  Google Scholar 

  48. Katagiri T, Urakawa K, Yamanashi Y, et al.: Overexpression of src family gene for tyrosine-kinase p59fyn in CD4-CD8-T cells of mice with alymphopro life rative disorder [published erratum appears in Proc Natl Acad Sci USA 1990 Apr; 87(7):2865]. Proc Natl Acad Sci USA 1989;86:10,064–10,068.

    Article  CAS  Google Scholar 

  49. Chan AC, Desai DM, Weiss A: The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptorsignal transduction. Ann Rev Immunol 1994; 12:555–592.

    Article  CAS  Google Scholar 

  50. Takahashi T, Yagi T, Kakinuma S, et al.: Suppression of autoimmune disease and of massive lymphadenopathy in MRL/Mp-lpr/lpr mice lacking tyrosine kinase Fyn (p59fyn). J Immunol 1997;159: 2532–2541.

    PubMed  CAS  Google Scholar 

  51. Krayevsky AA, Victoroval LS, Arzumanov AA, Jasko MV: Terminal deoxynucleotidyl transferase, catalysis of DNA (oligodeoxynucleotide) phosphorylation. Pharmacology & Therapeutics 2000;85: 165–173.

    Article  CAS  Google Scholar 

  52. Komori T, Pricop L, Hatakeyama A, Bona CA, Alt FW: Repertoires of antigen receptors in Tdt congenitally deficient mice. Int Rev Immunol 1996;13:317–325.

    PubMed  CAS  Google Scholar 

  53. Molano ID, Wloch MK, Alexander AA, Watanabe H, Gilkeson GS: Effect of a genetic deficiency of terminal deoxynucleotidyl transferase on autoantibody production by C57BL6 Fas(lpr) mice. Clinical Clinical Immunology 2000;94:24–32.

    Article  CAS  Google Scholar 

  54. Conde C, Weller S, Gilfillan S, Marcellin L, Martin T, Pasquali JL: Terminal deoxynucleotidyl transferase deficiency reduces the incidence of autoimmune nephritis in (New Zealand Black x New Zealand White)F1 mice. J Immunol 1998;161:7023–7030.

    PubMed  CAS  Google Scholar 

  55. Molano I, Redmond S, Sekine H, Zhang JCR, Gilkeson G: Genetic and pharmacologic blockade of TdT modulates autoantibody production, renal disease and survival in MRL/lpr mice. Arthritis Rheum 2000;43:s93 (abstract).

    Google Scholar 

  56. Yokoyama M, Hirata K, Kawashima S, Kawahara Y: Regulation of nitric oxide synthase gene expression by cytokines. J Card Fail 1996;2:S179-S185.

    Article  PubMed  CAS  Google Scholar 

  57. Nathan C: Mechnaisms and modulation of macrophage activation. Behring Inst Mitt 1991;88:200–207.

    PubMed  CAS  Google Scholar 

  58. Schwarting A, Wada T, Kinoshita K, Tesch G, Kelley VR: IFN-gamma receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL-Fas(lpr) mice. J Immunol 1998;161:494–503.

    PubMed  CAS  Google Scholar 

  59. Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR: Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(1pr) mice. J Exp Med 1999;190:1813–1824.

    Article  PubMed  CAS  Google Scholar 

  60. Bullard DC, King PD, Hicks MJ, Dupont B, Beaudet AL, Elkon KB: Intercellular adhesion molecule-1 deficiency protects MRL/MpJ-Fast(1pr) mice from early lethality. J. Immunol. 1997;159:2058–2067.

    PubMed  CAS  Google Scholar 

  61. Funk CD, Chen XS: 5-Lipoxygenase and leukotrienes. Transgenic mouse and nuclear targeting studies. Am J Respir Crit Care Med 2000;161:S120-S124.

    PubMed  CAS  Google Scholar 

  62. Sala A, Zarini S, Bolla M: Leukotrienes: lipid bioeffectors of inflammatory reactions. Biochemistry (Moscow) 1998;63:84–92.

    CAS  Google Scholar 

  63. Sperling RI: Dietary omega-3 fatty acids: effectson, lipid mediators of inflammation and rheumatoid arthritis. Rheum Dis Clin North Am 1991;17:373–389.

    PubMed  CAS  Google Scholar 

  64. Goulet JL, Griffiths RC, Ruiz P, et al.: Deficiency of 5-lipoxy genase abolishesex-related survival differences in MRL-lpr/lpr mice. J Immunol 1999;163:359–366.

    PubMed  CAS  Google Scholar 

  65. Passwell J, Schreiner GF, Nonaka M, Beuscher HV, Colten HR: Local extrahepatic expression of complement genes C3, factor B, C2, and C4 is increased in murine lupus nephritis. J Clin Invest 1988;82:1676–1684.

    PubMed  CAS  Google Scholar 

  66. Sheerin NS, Sacks SH: The local production of complement in the pathogenesis of renal inflam mation. Nephrologie 1999;20:377–382.

    PubMed  CAS  Google Scholar 

  67. Carroll MC: The role of complement and complement receptors in induction and regulation of immunity. Ann Rev Immunol 1998;16:545–568.

    Article  CAS  Google Scholar 

  68. Sheerin NS, Springall T, Carroll M, Sacks SH: Altered distribution of intraglomerular immune complexes in C 3-deficient mice. Immunology 1999;97:393–399.

    Article  PubMed  CAS  Google Scholar 

  69. Sekine H, Colten H, Garnier G, Circolo A, Gilkeson G: Complement factor C 3 is not required for full expression of lupus nephritis in MRL/lpr mice. Arthritis Rheum 2000;43:s111 (abstract).

    Google Scholar 

  70. Watanabe H, Garnier G, Circolo A, et al.: Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. Journal of Immunology 2000;164:786–794.

    CAS  Google Scholar 

  71. Nicolson AG, Haites NE, McKay NG, Wilson HM, MacLeod AM, Benjamin N: Induction of nitric oxide synthase in human mesangial cells. Biochem Biophys Res Comm 1993;193:1269–1274.

    Article  PubMed  CAS  Google Scholar 

  72. Weinberg JB, Granger DL, Pisetsky DS, et al.: The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med 1994;179:651–660.

    Article  PubMed  CAS  Google Scholar 

  73. Oates JC, Ruiz P, Alexander A, Pippen AM, Gilkeson GS: Effect of late modulation of nitric oxide production on murine lupus. Clin Immunol Immunopathol 1997; 83:86–92.

    Article  PubMed  CAS  Google Scholar 

  74. Grabowski PS, Wright PK, Van't Hof RJ, Helfrich MH, Ohshima H, Ralston SH: Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis. Br J Rheumatol 1997;36:651–655.

    Article  PubMed  CAS  Google Scholar 

  75. McInnes IB, Leung BP, Field M, et al.: Production of nitric oxide in the synovial membrane of rheumatoid and osteoarthritis patients. J Exp Med 1996;184:1519–1524.

    Article  PubMed  CAS  Google Scholar 

  76. Stadler J, Stefanovic-Racic M, Billiar TR, et al.: Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol 1991;147:3915–3920.

    PubMed  CAS  Google Scholar 

  77. Squadrito GL, Pryor WA: Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 1998;25:392–403.

    Article  PubMed  CAS  Google Scholar 

  78. Kroncke KD, Fehsel K, Kolb-Bachofen V: Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. Biol Chem Hoppe Seyler 1995;376:327–343.

    PubMed  CAS  Google Scholar 

  79. Landino LM, Crews BC, Timmons MD, Morrow JD, Marnett LJ: Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci USA 1996; 93:15,069–15,074.

    Article  CAS  Google Scholar 

  80. Stamler S, Gross SS, Moncada S: The role of nitric oxide and peroxynitrite in the pathogenises of spontaneous murine autoimmune disease, in The biology of nitric oxide, Vol. 5, Portland Press, London (1996).

    Google Scholar 

  81. Granger DL, Taintor RR, Boockvar KS, Hibbs JB Jr: Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol 1996;268:142–151.

    Article  PubMed  CAS  Google Scholar 

  82. Gilkeson GS, Mudgett JS, Seldin MF, et al.: Clinical and serologic manifestations of autoimmune disease in MRL-lpr/lpr mice lacking nitric oxide synthase type 2. J Exp Med 1997;186:365–373.

    Article  PubMed  CAS  Google Scholar 

  83. Cattell V, Cook HT, Ebrahim H, et al.: Anti-GBM glomerulonephritis in mice lacking nitric oxide synthase type 2. Kidney Int 1998; 53:932–936.

    Article  PubMed  CAS  Google Scholar 

  84. Brink I, Thiele B, Burmester GR, Trebeljahr G, Emmrich F, Hiepe F: Effects of anti-CD4 antibodies on the release of IL-6 and TNF-alpha in whole blood samples from patients with systemic lupus erythematosus. Lupus 1999;8:723–730.

    Article  PubMed  CAS  Google Scholar 

  85. Kalden JR: Biologic agents in the therapy of inflammatory rheumatic diseases, including the rapeutic antibodies, cytokines, and cytokine antagonists. Curr Opin Rheumatol 1994;6:281–286.

    Article  PubMed  CAS  Google Scholar 

  86. Burmester GR, Horneff G, Emmrich F: Management of early inflammatory arthritis. Intervention with immunomodulatory agents: monoclonal antibody therapy. Baillieres Clin Rheumatol 1992;6:415–434.

    Article  PubMed  CAS  Google Scholar 

  87. Chatenond L, Bach JF: The therapeutic use of monoclonal antibodies. Curr Opin Immunol 1988;1:257–260.

    Article  Google Scholar 

  88. Moreland LW, Heck LW Jr., Koopman WJ, et al.: V beta 17 T-cell receptor peptide vaccine. Results of a phase I dose-finding study in patients with rheumatoid arthritis. Ann NY Acad Sci 1995;756:211–214.

    Article  PubMed  CAS  Google Scholar 

  89. Olive D, Mawas C: Therapeutic applications of anti-CD4 antibodies. Crit Rev Ther Drug Carrier Syst 1993;10:29–63.

    PubMed  CAS  Google Scholar 

  90. Cosimi AB: Progress in monoclonal antibodies in clinical transplantation. Transplant Proc 1994; 26:1943–1944.

    PubMed  CAS  Google Scholar 

  91. Miller A: Current and investigational therapeies used to alter the course of disease in multiple sclerosis. South Med J 1997;90:367–375.

    PubMed  CAS  Google Scholar 

  92. Leeb BF, Sautner J: [Anti-TNF-alpha therapy as a new option in treatment of rheumatoid arthritis?]. Wien. Med. Wochenschr. 1999; 149:554–557.

    PubMed  CAS  Google Scholar 

  93. Goldenberg MM: Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin Ther 1999; 21:75–87; discussion 71–72.

    Article  PubMed  CAS  Google Scholar 

  94. Maini RN, Taylor PC: Anticytokine therapy for rheumatoid arthritis. Annu Rev Med 2000;51:207–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilly, C.M., Gilkeson, G.S. Use of genetic knockouts to modulate disease expression in a murine model of lupus, MRL/Ipr mice. Immunol Res 25, 143–153 (2002). https://doi.org/10.1385/IR:25:2:143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:25:2:143

Key Words

Navigation