Skip to main content
Log in

Design and Mechanism of On–Off Pulsed Drug Release Using Nonenteric Polymeric Systems via pH Modulation

  • Research Article
  • Theme: Advanced Technologies for Oral Controlled Release
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim was to design a pH-sensitive pulsatile drug delivery system that allows for an on–off pulsed release of a drug using polyacrylic acid (PAA) blended with ethyl cellulose (EC) in different ratios. PAA, a polyelectrolyte polymer, exhibits a highly coiled conformation at low pH but a highly extended structure at high pH. Fumaric acid, which is an internal acidifying agent, was incorporated into the hydroxypropyl methylcellulose-based core tablets to create an acidic microenvironmental pH (pHM). The concentration of fumaric acid inside the core tablet and the ratio of PAA/EC in the coating layer were very crucial in modulating drug release behaviors. When the fumaric acid was retained in the core tablet, it gave a more acidic pHM, so that the PAA was kept in a highly coiled state in the coated film, which hindered drug release (“off” release pattern). Interestingly, the release profiles of the drug and fumaric acid from coated tablets showed the on–off pulsed pattern upon dissolution. Imaging analyses using scanning electron microscopy, near-infrared imaging, confocal laser scanning microscopy, and Fourier transform infrared spectroscopy confirmed this on–off release behavior of the drug and fumaric acid from coated tablets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Stubbe BG, Smedt SCD, Demeester J. “Programmed polymeric devices” for pulsed drug delivery. Pharm Res. 2004;21:1732–40.

    Article  PubMed  CAS  Google Scholar 

  2. Arora S, Ali J, Ahuja A, Baboota S, Qureshi J. Pulsatile drug delivery systems: an approach for controlled drug delivery. Indian J Pharm Sci. 2006;68:295–300.

    Article  CAS  Google Scholar 

  3. Anal AK. Time-controlled pulsatile delivery systems for bioactive compounds. Recent Pat Drug Deliv Formul. 2007;1:73–9.

    Article  PubMed  CAS  Google Scholar 

  4. Roy P, Shahiwala A. Multiparticulate formulation approach to pulsatile drug delivery: current perspectives. J Contr Rel. 2009;134:74–80.

    Article  CAS  Google Scholar 

  5. Wallaert B, Brun P, Ostinelli J, Murciano D, Champel F, Blaive B, et al. The French bambuterol study group. A comparison of two long acting β-agonists, oral bambuterol and inhaled salmeterol, in the treatment of moderate to severe asthmatic patients with nocturnal symptoms. Respir Med. 1999;93:33–8.

    Article  PubMed  CAS  Google Scholar 

  6. D’alonzo GE, Smolensky MH, Feldman S, Gnosspelius Y, Karlsson K. Bambuterol in the treatment of asthma: a placebo-controlled comparison of once-daily morning vs. evening administration. Chest. 1995;107:406–12.

    Article  PubMed  Google Scholar 

  7. Nyberg L, Rosenborg J, Weibull E, Jönsson S, Kennedy BM, Nilsson M. Pharmacokinetics of bambuterol in healthy subjects. Br J Clin Phamacol. 1998;45:471–8.

    Article  CAS  Google Scholar 

  8. Rosenborg J, Larsson P, Nyberg L. Pharmacokinetics of bambuterol during oral administration of plain tablets and solution to healthy adults. Br J Clin Phamacol. 2000;49:199–206.

    Article  CAS  Google Scholar 

  9. Lee B-J, Min G-H. Oral controlled release of melatonin using polymer-reinforced and coated alginate beads. Int J Pharm. 1996;144:37–46.

    Article  CAS  Google Scholar 

  10. Cao Q-R, Choi H-G, Kim D-C, Lee B-J. Release behavior and photo-image of nifedipine tablet coated with high viscosity grade hydroxypropylmethylcellulose: effect of coating conditions. Int J Pharm. 2004;274:107–17.

    Article  PubMed  CAS  Google Scholar 

  11. Ozturk AG, Ozturk SS, Palsson BO, Wheatley TA, Dressman JB. Mechanism of release from pellets coated with an ethylcellulose-based film. J Contr Rel. 1990;14:203–13.

    Article  CAS  Google Scholar 

  12. Borgquist P, Zackrisson G, Nilsson B, Axelsson A. Simulation and parametric study of a film-coated controlled-release pharmaceutical. J Contr Rel. 2002;80:229–45.

    Article  CAS  Google Scholar 

  13. Muschert S, Siepmann F, Leclercq B, Carlin B, Siepmann J. Prediction of drug release from ethylcellulose coated pellets. J Contr Rel. 2009;135:71–9.

    Article  CAS  Google Scholar 

  14. Siepmann F, Hoffmann A, Leclercq B, Carlin B, Siepmann J. How to adjust desired drug release patterns from ethylcellulose-coated dosage forms. J Contr Rel. 2007;119:182–9.

    Article  CAS  Google Scholar 

  15. Sakellariou P, Rowe RC, White EFT. Polymer/polymer interaction in blends of ethyl cellulose with both cellulose derivatives and polyethylene glycol 6000. Int J Pharm. 1986;34:93–103.

    Article  CAS  Google Scholar 

  16. Sakellariou P, Rowe RC. The morphology of blends of ethylcellulose with hydroxypropyl methylcellulose as used in film coating. Int J Pharm. 1995;125:289–96.

    Article  CAS  Google Scholar 

  17. Wong D, Bodmeier R. Flocculation of an aqueous colloidal ethyl cellulose dispersion (Aquacoat) with a water-soluble polymer, hydroxypropyl methylcellulose. Eur J Pharm Biopharm. 1996;42:12–5.

    CAS  Google Scholar 

  18. Suh J, Paik H-J, Hwang BK. Ionization of poly(ethylenimine) and poly(allylamine) at various pH’s. Bioorg Chem. 1994;22:318–27.

    Article  CAS  Google Scholar 

  19. Grunlan JC, Liu L, Regev O. Weak polyelectrolyte control of carbon nanotube dispersion in water. J Collo Int Sci. 2008;317:346–9.

    Article  CAS  Google Scholar 

  20. Tran PHL, Tran HTT, Lee B-J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Contr Rel. 2008;129:59–65.

    Article  CAS  Google Scholar 

  21. Tran TT-D, Tran PH-L, Lee B-J. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm. 2009;72:83–90.

    Article  PubMed  CAS  Google Scholar 

  22. Piao Z-Z, Lee M-K, Lee B-J. Colonic release and reduced intestinal tissue damage of coated tablets containing naproxen inclusion complex. Int J Pharm. 2008;350:205–11.

    Article  PubMed  CAS  Google Scholar 

  23. British Pharmacopoeia Commission. British Pharmacopoeia 2001 (BP 2001). London: Stationery Office; 2001.

    Google Scholar 

  24. Tran TT-D, Tran PH-L, Choi H-G, Han H-K, Lee B-J. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm. 2010;384:60–6.

    Article  PubMed  CAS  Google Scholar 

  25. Siepmann J, Kranz H, Bodmeier R, Peppas NA. HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res. 1999;16:1748–56.

    Article  PubMed  CAS  Google Scholar 

  26. Miranda A, Millán M, Caraballo I. Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery. Int J Pharm. 2006;311:75–81.

    Article  PubMed  CAS  Google Scholar 

  27. Nair A, Gupta R, Vasanti S. In vitro controlled release of alfuzosin hydrochloride using HPMC-based matrix tablets and its comparison with marketed product. Pharm Dev Tech. 2007;12:621–5.

    Article  CAS  Google Scholar 

  28. Lee B-J, Ryu S-G, Cui J-H. Formulation and release characteristics of hydroxypropylmethylcellulose matrix tablet containing melatonin. Drug Dev Ind Pharm. 1999;25:493–501.

    Article  PubMed  CAS  Google Scholar 

  29. Lee B-J, Ryu S-G, Cui J-H. Controlled release of dual drug-loaded hydroxypropyl methylcellulose matrix tablet using drug-containing polymeric coatings. Int J Pharm. 1999;188:71–80.

    Article  PubMed  CAS  Google Scholar 

  30. Baveja SK, Rao KVR, Devi KP. Zero-order release hydrophilic matrix tablets of β-adrenergic blockers. Int J Pharm. 1987;39:39–45.

    Article  CAS  Google Scholar 

  31. Devi KP, Rao KVR, Baveja S, Fathi M, Roth M. Zero-order release formulation of oxprenolol hydrochloride with swelling and erosion control. Pharm Res. 1989;6:313–7.

    Article  PubMed  CAS  Google Scholar 

  32. Danckwerts MP. Development of a zero-order release oral compressed tablet with potential for commercial tabletting production. Int J Pharm. 1994;112:37–45.

    Article  CAS  Google Scholar 

  33. Thoma K, Zimmer T. Retardation of weakly basic drugs with diffusion tablets. Int J Pharm. 1990;58:197–202.

    Article  CAS  Google Scholar 

  34. Gabr KE. Effect of organic acids on the release patterns of weakly basic drugs from inert sustained release matrix tablets. Eur J Pharm Biopharm. 1992;38:199–202.

    CAS  Google Scholar 

  35. Streubel A, Siepmann J, Dashevsky A, Bodmeier R. pH-independent release of a weakly basic drug from water-insoluble and -soluble matrix tablets. J Contr Rel. 2000;67:101–10.

    Article  CAS  Google Scholar 

  36. Kranz H, Brun VL, Wagner T. Development of a multi particulate extended release formulation for ZK 811 752, a weakly basic drug. Int J Pharm. 2005;299:84–91.

    Article  PubMed  CAS  Google Scholar 

  37. Kranz H, Guthmannb C, Wagner T, Lipp R, Reinhard J. Development of a single unit extended release formulation for ZK 811 752, a weakly basic drug. Eur J Pharm Sci. 2005;26:47–53.

    Article  PubMed  CAS  Google Scholar 

  38. Siepe S, Lueckel B, Krammer A, Ries A, Gurny R. Strategies for the design of hydrophilic matrix tablets with controlled microenvironmental pH. Int J Pharm. 2006;316:14–20.

    Article  PubMed  CAS  Google Scholar 

  39. Espinoza R, Hong E, Villafuerte L. Influence of admixed citric acid on the release profile of pelanserin hydrochloride from HPMC matrix tablets. Int J Pharm. 2000;201:165–73.

    Article  PubMed  CAS  Google Scholar 

  40. Varma MVS, Kaushal AM, Garg S. Influence of micro-environmental pH on the gel layer behavior and release of a basic drug from various hydrophilic matrices. J Contr Rel. 2005;103:499–510.

    Article  CAS  Google Scholar 

  41. Tatavarti AS, Hoag SW. Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices. J Pharm Sci. 2006;95:1459–68.

    Article  PubMed  CAS  Google Scholar 

  42. Siepe S, Herrmann W, Borchert HH, Lueckel B, Kramer A, Ries A, et al. Microenvironmental pH and microviscosity inside pH-controlled matrix tablets: an EPR imaging study. J Contr Rel. 2006;112:72–8.

    Article  CAS  Google Scholar 

  43. Siepe S, Lueckel B, Kramer A, Ries A, Gurny R. Assessment of tailor-made HPMC-based matrix minitablets comprising a weakly basic drug compound. Drug Dev Ind Pharm. 2008;34:46–52.

    Article  PubMed  CAS  Google Scholar 

  44. Tiwari SB, Murthy TK, Pai MR, Mehta PR, Chowdary PB. Controlled release formulation of tramadol hydrochloride using hydro-philic and hydrophobic matrix system. AAPS Pharm Sci Tech. 2003;4:1–6.

    Article  Google Scholar 

  45. Piao Z-Z, Lee K-H, Kim D-J, Lee B-J. Comparison of release-controlling efficiency of polymeric coating materials using matrix-type casted films and diffusion-controlled coated tablet. AAPS Pharm Sci Tech. 2010;11(2):630–6. doi:10.1208/s12249-010-9377-0.

    Article  CAS  Google Scholar 

  46. Hammer M, Schweitzer D, Richter S, Königsdörffer E. Sodium fluorescein as a retinal pH indicator? Physiol Meas. 2005;26:N9–12.

    Article  PubMed  Google Scholar 

  47. Reich G. Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev. 2005;57:1109–43.

    Article  PubMed  CAS  Google Scholar 

  48. Awa K, Okumura T, Shinzawa H, Otsukac M, Ozaki Y. Self-modeling curve resolution (SMCR) analysis of near-infrared (NIR) imaging data of pharmaceutical tablets. Anal Chim Acta. 2008;619:81–6.

    Article  PubMed  CAS  Google Scholar 

  49. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  PubMed  CAS  Google Scholar 

  50. Choi J, Rubner MF. Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules. 2005;38:116–24.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the 2009 Small Business Administration, BK21 program and a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea. We would like to thank the Central Research Laboratory (Kangwon National University) for the use of the FTIR and SEM and the Research Institute of Pharmaceutical Sciences, Kangwon National University, for the use of their HPLC systems. Finally, we acknowledge KBSI (Chuncheon, Korea) for the CLSM and KAIST (Daejeon, Korea) for the NIR imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom-Jin Lee.

Additional information

Guest Editors: Michael Repka, Joseph Reo, Linda Felton, and Stephen Howard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, P.HL., Choe, JS., Tran, T.TD. et al. Design and Mechanism of On–Off Pulsed Drug Release Using Nonenteric Polymeric Systems via pH Modulation. AAPS PharmSciTech 12, 46–55 (2011). https://doi.org/10.1208/s12249-010-9562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9562-1

KEY WORDS

Navigation