Skip to main content

Advertisement

Log in

Applying the Taguchi Design for Optimized Formulation of Sustained Release Gliclazide Chitosan Beads: An In Vitro/In Vivo Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Gliclazide is a second generation of hypoglycemic sulfonylurea and acts selectively on pancreatic β cell to control diabetes mellitus. The objective of this study was to produce a controlled release system of gliclazide using chitosan beads. Chitosan beads were produced by dispersion technique using tripolyphosphate (TPP) as gelating agent. The effects of process variables including chitosan molecular weight, concentration of chitosan and TPP, pH of TPP, and cross-linking time after addition of chitosan were evaluated by Taguchi design on the rate of drug release, mean release time (MRT), release efficiency (RE8%), and particle size of the beads. The blood glucose lowering effect of the beads was studied in normal and streptozotocin-diabetic rats. The optimized formulation CL2T5P2t10 with about 31% drug loading, 2.4 h MRT, and 69.16% RE8% decreased blood glucose level in normal rats for 24 h compared to pure powder of gliclazide that lasted for just 10 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. A. K. Lauwo, D. K. Agrawal, and I. V. Emenike. Some pharmaceutical studies on sustained release coprecipitates of ampicillin-trihydrate with acrylic resin (Eudragit®-RS). Drug Dev. Ind. Pharm. 16:1375–1389 (1990).

    Article  CAS  Google Scholar 

  2. R. Bodmeier, H. Chen, P. Tyle, and P. Jarosz. Pseudophedrine HCL microspheres formulated into an oral suspension dosage form. J. Control. Release. 15:65–77 (1991).

    Article  CAS  Google Scholar 

  3. A. K. Anal, W. F. Stevens, and C. Remuñán-López. Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int. J. Pharm. 312(1–2):166–173 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. I. M. van der Lubben, J. C. Verhoef, G. Borchard, and H. E. Junginger. Chitosan for mucosal vaccination. Adv. Drug Deliv. Rev. 52:139–144 (2001).

    Article  PubMed  Google Scholar 

  5. A. D. Martino, M. Sittinger, and M. V. Risbud. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 26:5983–5990 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. L. Y. Wang, Y. H. Gu, Q. Z. Zhou, G. H. Ma, Y. H. Wan, and Z. G. Su. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf., B: Biointerfaces. 50:126–135 (2006).

    Article  CAS  Google Scholar 

  7. J. Wu, W. Wei, L. Y. Wang, Z. G. Su, and G. H. Ma. Preparation of uniform-sized pH-sensitive quaternized chitosan microsphere by combining membrane emulsification technique and thermal-gelation method. Colloids Surf., B: Biointerfaces. 63(2):164–175 (2008).

    Article  CAS  Google Scholar 

  8. R. Bodmeier, K. H. Oh, and Y. Pramar. Preparation and evaluation of drug-containing chitosan beads. Drug Dev. Ind. Pharm. 15:1475–1494 (1989).

    Article  CAS  Google Scholar 

  9. A. D. Sezer, and J. Akbûga. Release characteristics of chitosan treated alginate beads. I. Sustained release of a macromolecular drug from chitosan treated alginate beads. J. Microencap. 16(2):195–203 (1999).

    Article  CAS  Google Scholar 

  10. A. K. Anal, D. Bhopatkar, S. Tokura, H. Tamura, and W. F. Stevens. Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein. Drug Dev. Ind. Pharm. 29:713–724 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. A. K. Anal, and W. F. Stevens. Chitosan–alginate multilayer beads for controlled release of ampicillin. Int. J. Pharm. 290:45–54 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. D. Bhopatkar, A. K. Anal, and W. F. Stevens. Ionotropic alginate beads for controlled intestinal protein delivery: Effect of chitosan and barium counterions on entrapment and release. J. Microencap. 22:91–100 (2005).

    Article  CAS  Google Scholar 

  13. C. Remuñán-López, and R. Bodmeier. Effect of formulation and process variables on the formation of chitosan–gelatin coacervates. Int. J. Pharm. 135:63–72 (1996).

    Article  Google Scholar 

  14. R. O. Williams III, M. K. Barron, M. J. Alonso, and C. Remuñán-López. Investigation of a pMDI formulation containing chitosan microspheres. Int. J. Pharm. 174:209–222 (1998).

    Article  CAS  Google Scholar 

  15. P. He, S. S. Davis, and L. Illum. Chitosan microspheres prepared by spray drying. Int. J. Pharm. 187:53–65 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. C. Remuñán-López, M. L. Lorenzo-Lamosa, J. L. Vila-Jato, and M. J. Alonso. Development of new chitosan–cellulose multicore microparticles for controlled drug delivery. Eur. J. Pharma. Biopharm. 45:49–56 (1998).

    Article  Google Scholar 

  17. F. L. Mi, S. S. Shyu, T. Wong, S. F. Jang, S. T. Lee, and K. T. Lu. Chitosan–polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. Effect of pH-dependent ionic cross-linking or interpolymer complex using tripolyphosphate or polyphosphate reagent. J. Appl. Polym. Sci. 74:1093–1107 (1999).

    Article  CAS  Google Scholar 

  18. J. A. Ko, H. J. Park, S. J. Hwang, J. B. Park, and J. S. Lee. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int. J. Pharm. 249(1–2):165–174 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. F. L. Mi, S. S. Shyu, C. T. Chen, and J. Y. Schoung. Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: Preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials. 20(17):1603–1612 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. S. Nakai, K. Koide, and K. Eugster. A new mapping super-simplex optimization for food product and process development. J. Food Sci. 49:1143–1170 (1984).

    Article  Google Scholar 

  21. K. C. Chen, T. C. Lee, and J. Y. Houng. Search method for the optimal medium for the production of lactase by Kluyveromyces fragilis. Enzyme Microb. Technol. 14:659–664 (1992).

    Article  CAS  Google Scholar 

  22. R. Banerjii, and B. C. Bhattacharyya. Evolutionary operation (EVOP) to optimize three-dimensional biological experiments. Biotechnol. Bioeng. 41:67–71 (1993).

    Article  Google Scholar 

  23. R. Tunga, R. Banerjii, and B. C. Bhattacharyya. Optimization of n variable biological experiments by evolutionary operation-fractional design technique. J. Biosci. Bioeng. 87(2):224–230 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. J. Y. Houng, K. C. Chen, and W. H. Hsu. Optimization of cultivation medium composition for isoamylase production. Appl. Microb. Biotechnol. 31:61–64 (1989).

    Article  CAS  Google Scholar 

  25. S. Chopra, G. V. Patil, and S. K. Motwani. Release modulating hydrophilic matrix systems of losartan potassium: Optimization of formulation using statistical experimental design. Eur. J. Pharm. Biopharm. 66:73–82 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. O. Sreekumar, N. Chand, and A. C. Basappa. Optimization and interaction of media components in ethanol production using Zymomonas mobilis by response surface methodology. J. Biosci. Bioeng. 88(3):334–338 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. M. Jahanshahi, G. Najafpour, and M. Rahimnejad. Applying the Taguchi method for optimized fabrication of bovine serum albumin (BSA) nanoparticles as drug delivery vehicles. Afr. J. Biotechnol. 7(4):362–367 (2008).

    CAS  Google Scholar 

  28. B. D. Cobb, and J. M. Clarkson. A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Res. 22(18):3801–3805 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. R. A. Stone, and A. Veevers. The Taguchi influence on designed experiments. J. Chemometr. 8:103–110 (1994).

    Article  Google Scholar 

  30. J. D. Bendell, J. Disney, and W. A. Pridmore. Taguchi Methods: Applications in World Industry, IFS Publications, Bedford, 1989.

    Google Scholar 

  31. J. Y. Houng, H. F. Hsu, Y. H. Liu, and J. Y. Wu. Applying the Taguchi robust design to the optimization of the asymmetric reduction of ethyl 4-chloro acetoacetate by bakers’ yeast. J. Biotechnol. 100(3):239–250 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. F. K. Główka, T. W. Hermann, and M. Zabel. Bioavailability of gliclazide from some formulation tablets. Int. J. Pharm. 172(1–2):71–77 (1998).

    Google Scholar 

  33. D. B. Cambell, R. Lavielle, and C. Nathan. The mode of action and clinical pharmacology of gliclazide: A review. Diabetes Res. 14(Suppl):S21–S36 (1991).

    Google Scholar 

  34. European Diabetes Policy Group. A desktop guide to type 2 diabetes mellitus. Diabet. Med. 16:716–730 (1999).

    Article  Google Scholar 

  35. A. Harrower. Gliclazide modified release: From once daily administration to 24-hour blood glucose control. Metabolism. 49(suppl 2):7–11 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. M. Francillard, N. Frey, and M. Paraire. Pharmacokinetics of diamicron modified release (MR) in 1007 type 2 diabetic patients. J. Nutr. Health Aging. 5:31 (2001).

    Google Scholar 

  37. P. Delrat, M. Paraire, and R. Jochemsen. Complete bioavailability and lack of food effect on pharmacokinetics of gliclazide 30 mg modified release in healthy volunteers. Biopharm. Drug Dispos. 23:151–157 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. F. M. Gribble, and F. M. Ashcroft. Differential sensitivity of β-cell and extrapancreatic K ATP channels to gliclazide. Diabetologia. 42:845–848 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. F. M. Gribble, S. J. Tucker, and S. Seino. Tissue specificity of sulfonylureas: Studies on cloned cardiac and β cell KATP channels. Diabetes. 47:1412–1418 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. G. Schernthaner. Gliclazide modified release: a critical review of pharmacodynamic, metabolic, and vasoprotective effects. Metabolism. 52(Suppl 1):29–34 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. G. Taguchi. System of Experimental Design. Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, New York, 1987.

    Google Scholar 

  42. W. Y. Fowlkes, and C. M. Creveling. Engineering Methods for Robust Product Design. Using Taguchi Methods® in Technology and Product Development, Addison-Wesley, New York, 1995.

    Google Scholar 

  43. W. C. Lin, D. G. Yu, and M. C. Yang. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: Swelling kinetics and drug delivery properties. Colloids Surf., B: Biointerfaces. 44(2–3):143–151 (2005).

    Article  CAS  Google Scholar 

  44. J. A. Ko, H. J. Park, S. J. Hwang, J. B. Park, and J. S. Lee. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int. J. Pharm. 249(1–2):165–174 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. P. Costa, J. Manuel, and S. Lobo. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13:123–133 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. M. C. Gohel, and M. K. Panchal. Novel use of similarity factors f 2 and S d for development of diltiazem HCl modified-release tablets using a 32 factorial design. Drug Dev. Ind. Pharm. 28(1):77–87 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. A. Eidi, M. Eidi, and M. Sokhteh. Effect of fenugreek (Trigonella foenum-graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Nutr. Res. 27(11):728–733 (2007).

    Article  CAS  Google Scholar 

  48. G. Suresh Kumar, A. K. Shetty, K. Sambaiah, and P. V. Salimath. Antidiabetic property of fenugreek seed mucilage and spent turmeric in streptozotocin-induced diabetic rats. Nutr. Res. 25(11):1021–1028 (2005).

    Article  CAS  Google Scholar 

  49. A. Chandra, A. A. Mahdi, S. Ahmad, and R. K. Singh. Indian herbs result in hypoglycemic responses in streptozotocin-induced diabetic rats. Nutr. Res. 27(3):161–168 (2007).

    Article  CAS  Google Scholar 

  50. N. Pulido, A. Suarez, B. Casanova, R. Romero, E. Rodriguez, and A. Rovira. Gliclazide treatment of streptozotocin diabetic rats restores GLUT4 protein content and basal glucose uptake in skeletal muscle. Metabolism. 46(Suppl 1):10–13 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. X. Qiang, J. Satoh, M. Sagara, M. Fukuzawa, T. Masuda, S. Miyaguchi, K. Takahashi, and T. Toyota. Gliclazide inhibits diabetic neuropathy irrespective of blood glucose levels in streptozotocin-induced diabetic rats. Metabolism. 47(8):977–981 (1998).

    Article  PubMed  CAS  Google Scholar 

  52. K. J. Palmer, and R. N. Brogden. Gliclazide, an update of its pharmacological properties and therapeutic efficacy non-insulin-dependent diabetes mellitus. Drugs. 46:92–125 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. J. Duhault, M. Boulanger, and F. Tisserand. The pharmacology of S 1702, a new highly effective oral antidiabetic drug with unusual properties. Arzneim Forsch. 22:1682–1685 (1972).

    CAS  Google Scholar 

  54. A. E. Pontiroli, A. Calderara, and G. Pozza. Secondary failure of oral hypoglycaemic agents: Frequency, possible causes, and management. Diabetes Metab. Rev. 10:31–43 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Vice Chancellor of Research of Isfahan University of Medical Sciences for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Varshosaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshosaz, J., Tavakoli, N., Minayian, M. et al. Applying the Taguchi Design for Optimized Formulation of Sustained Release Gliclazide Chitosan Beads: An In Vitro/In Vivo Study. AAPS PharmSciTech 10, 158–165 (2009). https://doi.org/10.1208/s12249-009-9191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9191-8

Key words

Navigation