Skip to main content

Advertisement

Log in

Paradigm Shift in Toxicity Testing and Modeling

  • Review Article
  • Theme: New Paradigms in Pharmaceutical Sciences: In Silico Drug Discovery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The limitations of traditional toxicity testing characterized by high-cost animal models with low-throughput readouts, inconsistent responses, ethical issues, and extrapolability to humans call for alternative strategies for chemical risk assessment. A new strategy using in vitro human cell-based assays has been designed to identify key toxicity pathways and molecular mechanisms leading to the prediction of an in vivo response. The emergence of quantitative high-throughput screening (qHTS) technology has proved to be an efficient way to decompose complex toxicological end points to specific pathways of targeted organs. In addition, qHTS has made a significant impact on computational toxicology in two aspects. First, the ease of mechanism of action identification brought about by in vitro assays has enhanced the simplicity and effectiveness of machine learning, and second, the high-throughput nature and high reproducibility of qHTS have greatly improved the data quality and increased the quantity of training datasets available for predictive model construction. In this review, the benefits of qHTS routinely used in the US Tox21 program will be highlighted. Quantitative structure–activity relationships models built on traditional in vivo data and new qHTS data will be compared and analyzed. In conjunction with the transition from the pilot phase to the production phase of the Tox21 program, more qHTS data will be made available that will enrich the data pool for predictive toxicology. It is perceivable that new in silico toxicity models based on high-quality qHTS data will achieve unprecedented reliability and robustness, thus becoming a valuable tool for risk assessment and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Merlot C. Computational toxicology—a tool for early safety evaluation. Drug Discov Today. 2010;15(1–2):16–22.

    Article  PubMed  CAS  Google Scholar 

  2. Erickson BE. Modernizing toxicity tests. Chem Eng News. 2011;89:25–6.

    Google Scholar 

  3. Tetko IV, Sushko I, Pandey AK, Zhu H, Tropsha A, Papa E, et al. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J Chem Inf Model. 2008;48(9):1733–46.

    Article  PubMed  CAS  Google Scholar 

  4. Shukla SJ, Huang R, Austin CP, Xia M. The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov Today. 2010;15(23–24):997–1007.

    Article  PubMed  CAS  Google Scholar 

  5. Schmidt CW. TOX 21: new dimensions of toxicity testing. Environ Health Perspect. 2009;117(8):A348–53.

    Article  PubMed  Google Scholar 

  6. Kavlock RJ, Austin CP, Tice RR. Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal. 2009;29(4):485–7. discussion 92–7.

    Article  PubMed  Google Scholar 

  7. Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R. Statistical practice in high-throughput screening data analysis. Nat Biotechnol. 2006;24(2):167–75.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson RL, Huang R, Jadhav A, Southall N, Wichterman J, MacArthur R, et al. A quantitative high-throughput screen for modulators of IL-6 signaling: a model for interrogating biological networks using chemical libraries. Mol Biosyst. 2009;5(9):1039–50.

    Article  PubMed  CAS  Google Scholar 

  9. Xia M, Huang R, Witt KL, Southall N, Fostel J, Cho MH, et al. Compound cytotoxicity profiling using quantitative high-throughput screening. Environ Health Perspect. 2008;116(3):284–91.

    Article  PubMed  CAS  Google Scholar 

  10. Houck KA, Dix DJ, Judson RS, Kavlock RJ, Yang J, Berg EL. Profiling bioactivity of the ToxCast chemical library using BioMAP primary human cell systems. J Biomol Screen. 2009;14(9):1054–66.

    Article  PubMed  CAS  Google Scholar 

  11. Yasgar A, Shinn P, Jadhav A, Auld D, Michael S, Zheng W, et al. Compound management for quantitative high-throughput screening. JALA Charlottesv Va. 2008;13(2):79–89.

    PubMed  CAS  Google Scholar 

  12. Jadhav A, Ferreira RS, Klumpp C, Mott BT, Austin CP, Inglese J, et al. Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J Med Chem. 2010;53(1):37–51.

    Article  PubMed  CAS  Google Scholar 

  13. Huang R, Xia M, Cho MH, Sakamuru S, Shinn P, Houck KA, et al. Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ Health Perspect. 2011;119(8):1142–8.

    Article  PubMed  CAS  Google Scholar 

  14. Cristianini N, Shawe-Taylor J. An introduction to support vector machines. Cambridge: Cambridge University Press; 2005.

    Google Scholar 

  15. Fox T, Kriegl JM. Machine learning techniques for in silico modeling of drug metabolism. Curr Top Med Chem. 2006;6(15):1579–91.

    Article  PubMed  CAS  Google Scholar 

  16. Judson R, Elloumi F, Setzer RW, Li Z, Shah I. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. BMC Bioinforma. 2008;9:241.

    Article  Google Scholar 

  17. Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24(12):1565–7.

    Article  PubMed  CAS  Google Scholar 

  18. Novotarskyi S, Sushko I, Korner R, Pandey AK, Tetko IV. A comparison of different QSAR approaches to modeling CYP450 1A2 inhibition. J Chem Inf Model. 2011;51(6):1271–80.

    Article  PubMed  CAS  Google Scholar 

  19. Schroeter T, Schwaighofer A, Mika S, Laak AT, Suelzle D, Ganzer U, et al. Machine learning models for lipophilicity and their domain of applicability. Mol Pharm. 2007;4(4):524–38.

    Article  PubMed  CAS  Google Scholar 

  20. Kavlock RJ, Ankley G, Blancato J, Breen M, Conolly R, Dix D, et al. Computational toxicology—a state of the science mini review. Toxicol Sci. 2008;103(1):14–27.

    Article  PubMed  CAS  Google Scholar 

  21. Nigsch F, Macaluso NJ, Mitchell JB, Zmuidinavicius D. Computational toxicology: an overview of the sources of data and of modelling methods. Expert Opin Drug Metab Toxicol. 2009;5(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  22. Muster W, Breidenbach A, Fischer H, Kirchner S, Muller L, Pahler A. Computational toxicology in drug development. Drug Discov Today. 2008;13(7–8):303–10.

    Article  PubMed  CAS  Google Scholar 

  23. Benfenati E, Gini G. Computational predictive programs (expert systems) in toxicology. Toxicology. 1997;119(3):213–25.

    Article  PubMed  CAS  Google Scholar 

  24. Cronin MTD, Schultz TW. Pitfalls in QSAR. J Mol Struct Theochem. 2003;622(1–2):39–51.

    Article  CAS  Google Scholar 

  25. Cook EF, Goldman L. Empiric comparison of multivariate analytic techniques: advantages and disadvantages of recursive partitioning analysis. J Chron Dis. 1984;37(9–10):721–31.

    Article  PubMed  CAS  Google Scholar 

  26. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  27. Berger JO. Statistical decision theory and Bayesian analysis. New York: Springer; 1985.

    Google Scholar 

  28. Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab. 2001;58(2):109–30.

    Article  CAS  Google Scholar 

  29. Helguera AM, Combes RD, Gonzalez MP, Cordeiro MN. Applications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem. 2008;8(18):1628–55.

    Article  PubMed  CAS  Google Scholar 

  30. Shen J, Cheng F, Xu Y, Li W, Tang Y. Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model. 2010;50(6):1034–41.

    Article  PubMed  CAS  Google Scholar 

  31. Crippen GM, Wildman SA. Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci. 1999;39(5):868–73.

    Article  Google Scholar 

  32. Butina D. Unsupervised data base clustering based on Daylight’s fingerprint and Tanimoto similarity: a fast and automated way to cluster small and large data sets. J Chem Inf Comput Sci. 1999;39(4):747–50.

    Article  CAS  Google Scholar 

  33. Buse E, Habermann G, Osterburg I, Korte R, Weinbauer GF. Reproductive/developmental toxicity and immunotoxicity assessment in the nonhuman primate model. Toxicology. 2003;185(3):221–7.

    Article  PubMed  CAS  Google Scholar 

  34. Farine JC. Animal models in autoimmune disease in immunotoxicity assessment. Toxicology. 1997;119(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  35. Trobridge GD, Kiem HP. Large animal models of hematopoietic stem cell gene therapy. Gene Ther. 2010;17(8):939–48.

    Article  PubMed  CAS  Google Scholar 

  36. Penha FM, Rodrigues EB, Maia M, Dib E, Fiod Costa E, Furlani BA, et al. Retinal and ocular toxicity in ocular application of drugs and chemicals—part I: animal models and toxicity assays. Ophthalmic Res. 2010;44(2):82–104.

    Article  PubMed  CAS  Google Scholar 

  37. Perlman I. Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques. Doc Ophthalmol. 2009;118(1):3–28.

    Article  PubMed  Google Scholar 

  38. Chhabra RS, Bucher JR, Wolfe M, Portier C. Toxicity characterization of environmental chemicals by the US National Toxicology Program: an overview. Int J Hyg Environ Health. 2003;206(4–5):437–45.

    Article  PubMed  CAS  Google Scholar 

  39. Judson R, Richard A, Dix DJ, Houck K, Martin M, Kavlock R, et al. The toxicity data landscape for environmental chemicals. Environ Health Perspect. 2009;117(5):685–95.

    PubMed  CAS  Google Scholar 

  40. Gottmann E, Kramer S, Pfahringer B, Helma C. Data quality in predictive toxicology: reproducibility of rodent carcinogenicity experiments. Environ Health Perspect. 2001;109(5):509–14.

    Article  PubMed  CAS  Google Scholar 

  41. Marino DJ. Physiologically based pharmacokinetic modeling using Microsoft Excel and Visual Basic for applications. Toxicol Mech Methods. 2005;15(2):137–54.

    Article  PubMed  CAS  Google Scholar 

  42. Yang RS, Thomas RS, Gustafson DL, Campain J, Benjamin SA, Verhaar HJ, et al. Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling. Environ Health Perspect. 1998;106 Suppl 6:1385–93.

    Article  PubMed  CAS  Google Scholar 

  43. Germani M, Crivori P, Rocchetti M, Burton PS, Wilson AG, Smith ME, et al. Evaluation of a basic physiologically based pharmacokinetic model for simulating the first-time-in-animal study. Eur J Pharm Sci. 2007;31(3–4):190–201.

    Article  PubMed  CAS  Google Scholar 

  44. Macarron R. Critical review of the role of HTS in drug discovery. Drug Discov Today. 2006;11(7–8):277–9.

    Article  PubMed  Google Scholar 

  45. Gribbon P, Sewing A. High-throughput drug discovery: what can we expect from HTS? Drug Discov Today. 2005;10(1):17–22.

    Article  PubMed  Google Scholar 

  46. Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, et al. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA. 2006;103(31):11473–8.

    Article  PubMed  CAS  Google Scholar 

  47. Leister KP, Huang R, Goodwin BL, Chen A, Austin CP, Xia M. Two high throughput screen assays for measurement of TNF-alpha in THP-1 cells. Curr Chem Genomics. 2011;5:21–9.

    Article  PubMed  CAS  Google Scholar 

  48. Shukla SJ, Sakamuru S, Huang R, Moeller TA, Shinn P, Vanleer D, et al. Identification of clinically used drugs that activate pregnane X receptors. Drug Metab Dispos. 2011;39(1):151–9.

    Article  PubMed  CAS  Google Scholar 

  49. Xia M, Guo V, Huang R, Inglese J, Nirenberg M, Austin CP. A cell-based beta-lactamase reporter gene assay for the CREB signaling pathway. Curr Chem Genomics. 2009;3(1):7–12.

    Article  PubMed  CAS  Google Scholar 

  50. Thomas CJ, Auld DS, Huang R, Huang W, Jadhav A, Johnson RL, et al. The pilot phase of the NIH chemical genomics center. Curr Top Med Chem. 2009;9(13):1181–93.

    Article  PubMed  CAS  Google Scholar 

  51. Titus SA, Beacham D, Shahane SA, Southall N, Xia M, Huang R, et al. A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel. Anal Biochem. 2009;394(1):30–8.

    Article  PubMed  CAS  Google Scholar 

  52. Xia M, Huang R, Guo V, Southall N, Cho MH, Inglese J, et al. Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proc Natl Acad Sci USA. 2009;106(7):2412–7.

    Article  PubMed  CAS  Google Scholar 

  53. Cho MH, Niles A, Huang R, Inglese J, Austin CP, Riss T, et al. A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicol In Vitro. 2008;22(4):1099–106.

    Article  PubMed  CAS  Google Scholar 

  54. Huang R, Southall N, Cho MH, Xia M, Inglese J, Austin CP. Characterization of diversity in toxicity mechanism using in vitro cytotoxicity assays in quantitative high throughput screening. Chem Res Toxicol. 2008;21(3):659–67.

    Article  PubMed  CAS  Google Scholar 

  55. Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, et al. High-throughput screening assays for the identification of chemical probes. Nat Chem Biol. 2007;3(8):466–79.

    Article  PubMed  CAS  Google Scholar 

  56. Di L, Kerns EH. Application of pharmaceutical profiling assays for optimization of drug-like properties. Curr Opin Drug Discov Dev. 2005;8(4):495–504.

    CAS  Google Scholar 

  57. McKinney JD. The molecular basis of chemical toxicity. Environ Health Perspect. 1985;61:5–10.

    Article  PubMed  CAS  Google Scholar 

  58. Bristol DW, Wachsman JT, Greenwell A. The NIEHS predictive-toxicology evaluation project. Environ Health Perspect. 1996;104 Suppl 5:1001–10.

    Article  PubMed  CAS  Google Scholar 

  59. Benigni R, Andreoli C, Zito R. Prediction of rodent carcinogenicity of further 30 chemicals bioassayed by the U.S. National Toxicology Program. Environ Health Perspect. 1996;104 Suppl 5:1041–4.

    Article  PubMed  CAS  Google Scholar 

  60. Huff J, Haseman J. Long-term chemical carcinogenesis experiments for identifying potential human cancer hazards: collective database of the National Cancer Institute and National Toxicology Program (1976–1991). Environ Health Perspect. 1991;96:23–31.

    Article  PubMed  CAS  Google Scholar 

  61. Ashby J. The NIEHS predictive-toxicology evaluation project: the need to distinguish informed uncertainty from ignorant equivocation. Environ Health Perspect. 1997;105(7):688.

    Article  PubMed  CAS  Google Scholar 

  62. Ashby J, Tennant RW. Prediction of rodent carcinogenicity for 44 chemicals: results. Mutagenesis. 1994;9(1):7–15.

    Article  PubMed  CAS  Google Scholar 

  63. Tennant RW, Spalding J, Stasiewicz S, Ashby J. Prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 44 chemicals by the National Toxicology Program. Mutagenesis. 1990;5(1):3–14.

    Article  PubMed  CAS  Google Scholar 

  64. Ashby J, Tennant RW. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res. 1991;257(3):229–306.

    Article  PubMed  CAS  Google Scholar 

  65. Lee Y, Buchanan BG, Rosenkranz HS. Carcinogenicity predictions for a group of 30 chemicals undergoing rodent cancer bioassays based on rules derived from subchronic organ toxicities. Environ Health Perspect. 1996;104 Suppl 5:1059–63.

    Article  PubMed  CAS  Google Scholar 

  66. Parry JM. Detecting and predicting the activity of rodent carcinogens. Mutagenesis. 1994;9(1):3–5.

    Article  PubMed  CAS  Google Scholar 

  67. King RD, Srinivasan A. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environ Health Perspect. 1996;104 Suppl 5:1031–40.

    Article  PubMed  CAS  Google Scholar 

  68. Sams-Dodd F. Target-based drug discovery: is something wrong? Drug Discov Today. 2005;10(2):139–47.

    Article  PubMed  CAS  Google Scholar 

  69. Roy K, Roy PP, Leonard JT. Exploring the impact of size of training sets for the development of predictive QSAR models. Chemometr Intell Lab. 2008;90(1):31–42.

    Article  CAS  Google Scholar 

  70. Benigni R, Bossa C. Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev. 2011;111(4):2507–36.

    Article  PubMed  CAS  Google Scholar 

  71. Schwarz T, Schwarz A. DNA repair and cytokine responses. J Investig Dermatol Symp Proc. 2009;14(1):63–6.

    Article  PubMed  CAS  Google Scholar 

  72. Iyer RR, Pluciennik A, Burdett V, Modrich PL. DNA mismatch repair: functions and mechanisms. Chem Rev. 2006;106(2):302–23.

    Article  PubMed  CAS  Google Scholar 

  73. Saxowsky TT, Doetsch PW. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev. 2006;106(2):474–88.

    Article  PubMed  CAS  Google Scholar 

  74. Gonzalez FJ, Peters JM, Cattley RC. Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activator receptor alpha. J Natl Cancer Inst. 1998;90(22):1702–9.

    Article  PubMed  CAS  Google Scholar 

  75. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim. 2005;33(5):445–59.

    PubMed  CAS  Google Scholar 

  76. Sushko I, Novotarskyi S, Korner R, Pandey AK, Cherkasov A, Li J, et al. Applicability domains for classification problems: benchmarking of distance to models for Ames mutagenicity set. J Chem Inf Model. 2010;50(12):2094–111.

    Article  PubMed  CAS  Google Scholar 

  77. Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J Mol Graph Model. 2008;26(8):1315–26.

    Article  PubMed  CAS  Google Scholar 

  78. Wassermann AM, Peltason L, Bajorath J. Computational analysis of multi-target structure–activity relationships to derive preference orders for chemical modifications toward target selectivity. ChemMedChem. 2010;5(6):847–58.

    Article  PubMed  CAS  Google Scholar 

  79. Andersen ME, Krewski D. Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci. 2009;107(2):324–30.

    Article  PubMed  CAS  Google Scholar 

  80. Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci. 2009;111(2):202–25.

    Article  PubMed  CAS  Google Scholar 

  81. Simmons SO, Fan CY, Yeoman K, Wakefield J, Ramabhadran R. NRF2 oxidative stress induced by heavy metals is cell type dependent. Curr Chem Genomics. 2011;5:1–12.

    Article  PubMed  CAS  Google Scholar 

  82. Yamamoto KN, Hirota K, Kono K, Takeda S, Sakamuru S, Xia M, et al. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines. Environ Mol Mutagen. 2011;52(7):547–61.

    Article  PubMed  CAS  Google Scholar 

  83. Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, et al. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol. 2010;79(9):1272–80.

    Article  PubMed  CAS  Google Scholar 

  84. Xia M, Huang R, Sun Y, Semenza GL, Aldred SF, Witt KL, et al. Identification of chemical compounds that induce HIF-1alpha activity. Toxicol Sci. 2009;112(1):153–63.

    Article  PubMed  CAS  Google Scholar 

  85. Xia M, Shahane SA, Huang R, Titus SA, Shum E, Zhao Y, et al. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicol Appl Pharmacol. 2011;252(3):250–8.

    Article  PubMed  CAS  Google Scholar 

  86. Stouch TR, Kenyon JR, Johnson SR, Chen XQ, Doweyko A, Li Y. In silico ADME/Tox: why models fail. J Comput Aided Mol Des. 2003;17(2–4):83–92.

    Article  PubMed  CAS  Google Scholar 

  87. Veith H, Southall N, Huang R, James T, Fayne D, Artemenko N, et al. Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nat Biotechnol. 2009;27(11):1050–5.

    Article  PubMed  CAS  Google Scholar 

  88. Li Q, Cheng T, Wang Y, Bryant SH. PubChem as a public resource for drug discovery. Drug Discov Today. 2010;15(23–24):1052–7.

    Article  PubMed  CAS  Google Scholar 

  89. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37:W623–33. Web Server issue.

    Article  PubMed  CAS  Google Scholar 

  90. Cheng F, Yu Y, Shen J, Yang L, Li W, Liu G, et al. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J Chem Inf Model. 2011;51:996–1011.

    CAS  Google Scholar 

  91. Shen MY, Su BH, Esposito EX, Hopfinger AJ, Tseng YJ. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets. Chem Res Toxicol. 2011;24(6):934–49.

    Article  PubMed  CAS  Google Scholar 

  92. Sun H, Veith H, Xia M, Austin CP, Huang R. Predictive models for CYP450 isozymes based on qHTS data. J Chem Inf Model. 2011;51:2474–81.

    Article  PubMed  CAS  Google Scholar 

  93. Bezdek JC, Pal NR. Some new indexes of cluster validity. IEEE Trans Syst Man Cybern B Cybern. 1998;28(3):301–15.

    Article  PubMed  CAS  Google Scholar 

  94. DiMaggio Jr PA, Subramani A, Judson RS, Floudas CA. A novel framework for predicting in vivo toxicities from in vitro data using optimal methods for dense and sparse matrix reordering and logistic regression. Toxicol Sci. 2010;118(1):251–65.

    Article  PubMed  CAS  Google Scholar 

  95. Zhu H, Rusyn I, Richard A, Tropsha A. Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure–activity relationship models of animal carcinogenicity. Environ Health Perspect. 2008;116(4):506–13.

    PubMed  CAS  Google Scholar 

  96. Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, et al. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect. 2011;119(3):364–70.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Intramural Research Programs (Interagency agreement #Y2-ES-7020-01) of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), and the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH). The statements, opinions, or conclusions contained therein do not necessarily represent the statements, opinions, or conclusions of NIEHS, or NCATS, NIH, or the US government. We thank in particular Anna Rossoshek for helpful comments and suggestions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmao Sun or Ruili Huang.

Additional information

Guest Editors: Xiang-Qun Xie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Xia, M., Austin, C.P. et al. Paradigm Shift in Toxicity Testing and Modeling. AAPS J 14, 473–480 (2012). https://doi.org/10.1208/s12248-012-9358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9358-1

KEY WORDS

Navigation