Skip to main content
Log in

Membrane stress tensor in the presence of lipid density and composition inhomogeneities

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We derive the expression of the stress tensor for one- and two-component lipid membranes with density and composition inhomogeneities. We first express the membrane stress tensor as a function of the free-energy density by means of the principle of virtual work. We then apply this general result to a monolayer model which is shown to be a local version of the area-difference elasticity (ADE) model. The resulting stress tensor expression generalizes the one associated with the Helfrich model, and can be specialized to obtain the one associated with the ADE model. Our stress tensor directly gives the force exchanged through a boundary in a monolayer with density and composition inhomogeneities. Besides, it yields the force density, which is also directly obtained in covariant formalism. We apply our results to study the forces induced in a membrane by a local perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed. (Garland, New York, 2002).

    Google Scholar 

  2. O.G. Mouritsen, Life—as a matter of fat (The frontiers collection, Springer, Berlin, 2005).

    Google Scholar 

  3. W. Helfrich, Z. Naturforsch. C 28, 693 (1973).

    Google Scholar 

  4. W. Helfrich, R.-M. Servuss, Nuovo Cimento D 3, 137 (1984).

    Article  ADS  Google Scholar 

  5. J.-B. Fournier, A. Ajdari, L. Peliti, Phys. Rev. Lett. 86, 4970 (2001).

    Article  ADS  Google Scholar 

  6. W. Helfrich, Z. Naturforsch. A 33, 305 (1978).

    ADS  Google Scholar 

  7. F. Brochard, J.-F. Lennon, J. Phys. (Paris) 36, 1035 (1975).

    Article  Google Scholar 

  8. H. Engelhardt, H.P. Duwe, E. Sackmann, J. Phys. (Paris) Lett. 46, 395 (1985).

    Google Scholar 

  9. P. Méléard, J.F. Faucon, M.D. Mitov, P. Bothorel, Europhys. Lett. 19, 267 (1992).

    Article  ADS  Google Scholar 

  10. G.H.W. Lim, M. Wortis, R. Mukhopadhyay, Proc. Natl. Acad. Sci. U.S.A. 99, 16766 (2002).

    Article  ADS  Google Scholar 

  11. I. Derényi, F. Jülicher, J. Prost, Phys. Rev. Lett. 88, 238101 (2002).

    Article  ADS  Google Scholar 

  12. T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003).

    Article  ADS  Google Scholar 

  13. E. Evans, Biophys. J. 30, 265 (1980).

    Article  ADS  Google Scholar 

  14. S. Svetina, B. Zekš, Eur. Biophys. J. 17, 101 (1989).

    Article  Google Scholar 

  15. W. Wiese, W. Harbich, W. Helfrich, J. Phys.: Condens. Matter 4, 1647 (1992).

    Article  ADS  Google Scholar 

  16. L. Miao, U. Seifert, M. Wortis, H.-G. Döbereiner, Phys. Rev. E 49, 5389 (1994).

    Article  ADS  Google Scholar 

  17. S. Svetina, M. Brumen, B. Zekš, Stud. Biophys. 110, 177 (1985).

    Google Scholar 

  18. U. Seifert, L. Miao, H.-G. Döbereiner, M. Wortis, in The Structure and Conformation of Amphiphilic Membranes, Vol. 66 of Springer Proceedings in Physics, edited by R. Lipowsky, D. Richter, K. Kremer (Springer, Berlin, 1991), pp. 93–96.

    Google Scholar 

  19. N. Khalifat, N. Puff, S. Bonneau, J.-B. Fournier, M.I. Angelova, Biophys. J. 95, 4924 (2008).

    Article  ADS  Google Scholar 

  20. J.-B. Fournier, N. Khalifat, N. Puff, M.I. Angelova, Phys. Rev. Lett. 102, 018102 (2009).

    Article  ADS  Google Scholar 

  21. E. Mabrouk, D. Cuvelier, F. Brochard-Wyart, P. Nassoy, M.H. Li, Proc. Natl. Acad. Sci. U.S.A. 106, 7294 (2009).

    Article  ADS  Google Scholar 

  22. E. Evans, A. Yeung, Chem. Phys. Lipids 73, 39 (1994).

    Article  Google Scholar 

  23. U. Seifert, S.A. Langer, Europhys. Lett. 23, 71 (1993).

    Article  ADS  Google Scholar 

  24. D. Kabaso, R. Shlomovitz, T. Auth, V.L. Lew, N.S. Gov, Biophys. J. 99, 808 (2010).

    Article  ADS  Google Scholar 

  25. G. Napoli, L. Vergori, J. Phys. A: Math. Theor. 43, 445207 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  26. A.-F. Bitbol, J.-B. Fournier, M.I. Angelova, N. Puff, J. Phys.: Condens. Matter (to be published in May 2011).

  27. M.M. Müller, M. Deserno, Phys. Rev. E 76, 011921 (2007).

    Article  ADS  Google Scholar 

  28. A.-F. Bitbol, P.G. Dommersnes, J.-B. Fournier, Phys. Rev. E 81, 050903(R) (2010).

    Article  ADS  Google Scholar 

  29. J.-B. Fournier, Soft Matter 3, 883 (2007).

    Article  ADS  Google Scholar 

  30. W. Cai, T.C. Lubensky, Phys. Rev. E 52, 4251 (1995).

    Article  ADS  Google Scholar 

  31. L. Miao, M.A. Lomholt, J. Kleis, Eur. Phys. J. E 9, 143 (2002).

    Article  Google Scholar 

  32. E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).

    Article  ADS  Google Scholar 

  33. S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces and Membranes (Addison-Wesley, Reading, MA, 1994).

    Google Scholar 

  34. A.G. Petrov, I. Bivas, Prog. Surf. Sci. 16, 389 (1984).

    Article  ADS  Google Scholar 

  35. M. Doi, Introduction to Polymer Physics (Oxford Science Publications, 1995).

  36. E.A. Evans, Biophys. J. 14, 923 (1974).

    Article  ADS  Google Scholar 

  37. S.A. Shkulipa, W.K. den Otter, W.J. Briels, J. Chem. Phys. 125, 234905 (2006).

    Article  ADS  Google Scholar 

  38. R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Dynamics (Dover, New York, 1989).

    Google Scholar 

  39. M.A. Lomholt, P.L. Hansen, L. Miao, Eur. Phys. J. E 16, 439 (2005).

    Article  Google Scholar 

  40. J.T. Jenkins, J. Math. Biol. 4, 149 (1977).

    Article  MATH  Google Scholar 

  41. T.R. Powers, Rev. Mod. Phys. 82, 1607 (2010).

    Article  ADS  Google Scholar 

  42. R. Capovilla, J. Guven, J. Phys. A 35, 6233 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. R. Capovilla, J. Guven, J.A. Santiago, Phys. Rev. E 66, 021607 (2002).

    Article  ADS  Google Scholar 

  44. R. Capovilla, J. Guven, Phys. Rev. E 66, 041604 (2002).

    Article  ADS  Google Scholar 

  45. M. Deserno, M.M. Müller, J. Guven, Phys. Rev. E 76, 011605 (2007).

    Article  ADS  Google Scholar 

  46. J.-B. Fournier, C. Barbetta, Phys. Rev. Lett. 100, 078103 (2008).

    Article  ADS  Google Scholar 

  47. C. Barbetta, A. Imparato, J.-B. Fournier, Eur. Phys. J. E 31, 333 (2010).

    Article  Google Scholar 

  48. C. Barbetta, J.-B. Fournier, Eur. Phys. J. E 29, 183 (2009).

    Article  Google Scholar 

  49. M.M. Müller, M. Deserno, J. Guven, Phys. Rev. E 72, 061407 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  50. M.M. Müller, M. Deserno, J. Guven, Europhys. Lett. 69, 482 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -B. Fournier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bitbol, A.F., Peliti, L. & Fournier, J.B. Membrane stress tensor in the presence of lipid density and composition inhomogeneities. Eur. Phys. J. E 34, 53 (2011). https://doi.org/10.1140/epje/i2011-11053-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11053-4

Keywords

Navigation