Skip to main content
Log in

Mass-asymmetry effects in coupled electron-hole quantum wire system

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect of mass-asymmetry on the ground-state of coupled electron-hole quantum wire system is investigated within the quantum version of the self-consistent mean-field approximation of Singwi, Tosi, Land, and Sjölander. The pair-correlation functions, static density susceptibility, and correlation energy are calculated over a range of wire parameters. We find that the mass-asymmetry affects appreciably both the intra- and inter-wire correlations, which in turn bring in a marked change in the e-h ground-state. Below a critical density, the e-h correlations now favor the liquid-Wigner crystal phase transition at a sufficiently large wire spacing. This result is in striking difference with the corresponding study on the mass-symmetric e-h wire model since here transition to the Wigner crystal phase occurs in the adequately close proximity of two wires at a much lower density, and there also occurs a crossover from Wigner to a charge-density-wave phase at relatively higher densities. We find that for a GaAs based e-h wire the critical density for Wigner crystallization is enhanced by a factor of about 2.6. As an important result, our theory captures nicely the recent experimental observation of Wigner crystallization in an un-equal density GaAs based e-h wire by Steinberg et al. [Phys. Rev. B 73, 113307 (2006)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei-ming Que, G. Kirczenow, Phys. Rev. B 39, 5998 (1989)

    Article  ADS  Google Scholar 

  2. A. Gold, Philos. Mag. Lett. 66, 163 (1992)

    Article  ADS  Google Scholar 

  3. R. Wang, P.P. Ruden, Phys. Rev. B 52, 7826 (1995)

    Article  ADS  Google Scholar 

  4. S. Das Sarma, E.H. Hwang, Phys. Rev. B 59, 10730 (1999)

    Article  Google Scholar 

  5. R.K. Moudgil, J. Phys.: Condens. Matter 12, 1781 (2000)

    Article  ADS  Google Scholar 

  6. W. Hansen, M. Horst, J.P. Kotthaus, U. Merkt, Ch. Sikorski, K. Ploog, Phys. Rev. Lett. 58, 2586 (1987)

    Article  ADS  Google Scholar 

  7. T. Demel, D. Heitmann, P. Grambow, K. Ploog, Phys. Rev. B 38, 12732 (1988)

    Article  ADS  Google Scholar 

  8. P. Debray, V. Zverev, O Raichev, R. Klesse, P. Vasilopoulos, R.S. Newrock, J. Phys.: Condens. Matter 13, 3389 (2001)

    Article  ADS  Google Scholar 

  9. P. Debray, V.N. Zverev, V. Gurevich, R. Klesse, R.S. Newrock, Semicond. Sci. Technol. 17, R21 (2002)

    Article  ADS  Google Scholar 

  10. H. Steinberg, O.M. Auslaender, A. Yacoby, J. Qian, G.A. Fiete, Y. Tserkovnyak, B.I. Halperin, K.W. Baldwin, L.N. Pfeiffer, K.W. West, Phys. Rev. B 73, 113307 (2006)

    Article  ADS  Google Scholar 

  11. Tadaaki Nagao, Shin Yaginuma, Takeshi Inaoka, Toshio Sakurai, Phys. Rev. Lett. 97, 116802 (2006)

    Article  ADS  Google Scholar 

  12. B. Tanatar, C. Bulutay, Phys. Rev. B 59, 15019 (1999)

    Article  ADS  Google Scholar 

  13. V. Garg, R.K. Moudgil, K. Kumar, P.K. Ahluwalia, Phys. Rev. B 78, 045406 (2008)

    Article  ADS  Google Scholar 

  14. J.S. Thakur, D. Neilson, Phys. Rev. B 56, 4671 (1997)

    Article  ADS  Google Scholar 

  15. L.K. Saini, K. Tankeshwar, R.K. Moudgil, Phys. Rev. B 70, 075302 (2004), and the references given therein

    Article  ADS  Google Scholar 

  16. N. Mutluay, B. Tanatar, Phys. Rev. B 55, 6697 (1997)

    Article  ADS  Google Scholar 

  17. N. Mutluay, B. Tanatar, J. Phys.: Condens. Matter 9, 3033 (1997)

    Article  ADS  Google Scholar 

  18. N. Mutluay, B. Tanatar, J. Phys.: Condens. Matter 9, 9819 (1997)

    Article  ADS  Google Scholar 

  19. K.S. Singwi, M.P. Tosi, R.H. Land, A. Sjölander, Phys. Rev. 176, 589 (1968)

    Article  ADS  Google Scholar 

  20. T. Hasegawa, M. Shimizu, J. Phys. Soc. Jpn 38, 965 (1975)

    Article  ADS  Google Scholar 

  21. T.K. Ng, K.S. Singwi, Phys. Rev. B 35, 6683 (1987)

    Article  ADS  Google Scholar 

  22. D. Pines, P. Noziers, The Theory of Quantum Liquids (Benjamin, New York, 1966), Vol. 1

    Google Scholar 

  23. See, for example, L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Pergamon Press, 1980), Part 1

  24. L. Swierkowski, D. Neilson, J. Szymanski, Phys. Rev. Lett. 67, 240 (1991)

    Article  ADS  Google Scholar 

  25. R.K. Moudgil, J. Phys.: Condens. Matter 18, 1285 (2006)

    Article  ADS  Google Scholar 

  26. See, for example, G.D. Mahan, Many-Particle Physics, 2nd edn. (Plenum, New York, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Moudgil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moudgil, R., Garg, V. & Ahluwalia, P. Mass-asymmetry effects in coupled electron-hole quantum wire system. Eur. Phys. J. B 74, 517–525 (2010). https://doi.org/10.1140/epjb/e2010-00103-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00103-9

Keywords

Navigation