Skip to main content
Log in

Rheology of the mantle and tectonics of the oceanic lithospheric plates

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The modern concepts of the rheology of viscous mantle and brittle lithosphere, as well as the results of the numerical experiments on the processes in a heated layer with a viscosity dependent on pressure, temperature, and shear stress, are reviewed. These dependences are inferred from the laboratory studies of olivine and measurements of postglacial rebound (glacial isostatic adjustment) and geoid anomalies. The numerical solution of classical conservation equations for mass, heat, and momentum shows that thermal convection with a highly viscous rigid lithosphere develops in the layer with the parameters of the mantle with the considered rheology under a temperature difference of 3500 K, without any special additional conditions due to the self-organization of the material. If the viscosity parameters of the lithosphere correspond to dry olivine, the lithosphere remains monolithic (unbroken). At a lower strength (probably due to the effects of water), the lithosphere splits into a set of separate rigid plates divided by the ridges and subduction zones. The plates submerge into the mantle, and their material is involved in the convective circulation. The results of the numerical experiment may serve as direct empirical evidence to validate the basic concepts of the theory of plate tectonics; these experiments also reveal some new features of the mantle convection. The probable structure of the flows in the upper and lower mantle (including the asthenosphere), which shows the primary role of the lithospheric plates, is demonstrated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews, E. and Billen, M., Rheologic Controls on the Dynamics of Slab Detachment, Tectonophysics, 2009, vol. 464, pp. 60–69.

    Article  Google Scholar 

  • Becker, T., A Numerical Study on the Effects of Surface Boundary Condition and Rheology on Slab Dynamics, Bollettino di Geofisica, 2008, vol. 49, pp. 177–182.

    Google Scholar 

  • Bercovici, D., A Simple Model of Plate Generation from Mantle Flow, Geophys. J. Int., 1993, vol. 114, pp. 635–650.

    Article  Google Scholar 

  • Bercovici, D., A Source-Sink Model of the Generation of Plate Tectonics from Non-Newtonian Mantle Flow, J. Geophys. Res., 1995, vol. 100, pp. 2013–2030.

    Article  Google Scholar 

  • Billen, M. and Hirth, G., Newtonian Versus Non-Newtonian Upper Mantle Viscosity: Implications for Subduction Initiation, Geophys. Res. Lett., 2005, vol. 32, L19304. doi: 10.1029/2005GL023457

    Article  Google Scholar 

  • Burov, E.B., Plate Rheology and Mechanics, in Treatise of Geophysics. Vol. 6: Cryst and Lithosphere Dynamics, Schubert, G., Ed., Amsterdam: Elsevier, 2007, pp. 100–161.

    Google Scholar 

  • Byerlee, J., Friction of Rocks, Pure Appl. Geophys., 1978, vol. 116, pp. 615–626.

    Article  Google Scholar 

  • Chopra, P.N. and Paterson, M.S., The Role of Water in the Deformation of Dunite, J. Geophys. Res., 1984, vol. 89, pp. 7861–7876.

    Article  Google Scholar 

  • Evseev, A.N., Mantle Convection and Phase Transitions, in Devyatoe mezhdunarodnoe soveshchanie “Fiziko-khimicheskie i petrofizicheskie issledovaniya v naukakh o Zemle” (The Ninth International Conference on Physicochemical and Rock Physical Studies for Earth Sciences), Moscow: IFKh RAN, GEOKhI Ran, 2008.

    Google Scholar 

  • ČÍžková, H., van Hunen, J., van den Berg, A., and Vlaar, N., The Influence of Rheological Weakening and Yield Stress on the Interaction of Slabs with the 670 km Discontinuity, Earth Planet. Sci. Lett., 2002, vol. 199, pp. 447–457.

    Article  Google Scholar 

  • Goetze, C. and Evans, B., Stress and Temperature in the Bending Lithosphere as Constrained by Experimental Rock Mechanics, Geophys. J. R. Astron. Soc., 1979, vol. 59, pp. 463–478.

    Article  Google Scholar 

  • Hirth, G. and Kohlstedt, D., Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists, in Inside the Subduction Factory. Geophysical Monograph Series, Eiler, J., Ed., Washington DC: American Geophysical Union, 2003, vol. 138, pp. 83–105.

    Chapter  Google Scholar 

  • Hirth, G., Laboratory Constraints on the Rheology of the Upper Mantle, in Plastic Deformation of Minerals and Rocks, Karato, S.I. and Wenk, H.R., Eds., Washington DC: Mineralogical Society of America, 2003, vol. 51, pp. 97–116.

    Google Scholar 

  • Karato, S., Deformation of Earth Materials, Cambridge: Cambridge Univ., 2008.

    Google Scholar 

  • Karato, S., Water Distribution across the Mantle Transition Zone and Its Implications for Global Material Circulation, Earth Planet. Sci. Lett., 2011, vol. 301, nos. 3–4, pp. 413–423. doi: 10.1016/j.epsl.2010.11.038.

    Article  Google Scholar 

  • Katayama, I. and Karato, S., Low-Temperature, High-Stress Deformation of Olivine under Water-Saturated Conditions, Phys. Earth Planet. Inter., 2008, vol. 168, pp. 125–133.

    Article  Google Scholar 

  • Kaus, B.J.P. and Becker, T.W., A Numerical Study on the Effects of Surface Boundary Condition and Rheology on Slab Dynamics, Bollettino di Geofisica, 2008, vol. 49, pp. 177–182.

    Google Scholar 

  • Kirby, S.H., Tectonic Stresses in the Lithosphere: Constraints Provided by the Experimental Deformation of Rocks, J. Geophys. Res., 1980, vol. 85, pp. 6353–6363.

    Article  Google Scholar 

  • Kneller, E., Keken, P., Karato, Sh., and Park, J., B-Type Olivine Fabric in the Mantle Wedge: Insights from High-Resolution Non-Newtonian Subduction Zone Models, Earth Planet. Sci. Lett., 2005, vol. 237, pp. 781–797.

    Article  Google Scholar 

  • Kneller, E.A., van Keken, P.E., Katayama, I., and Karato, S., Stress, Strain, and B-Type Olivine Fabric in the Fore-Arc Mantle: Sensitivity Tests Using High-Resolution Steady-State Subduction Zone Models, J. Geophys. Res., 2007, vol. 112, B04406. doi: 10.1029/2006JB004544.

    Article  Google Scholar 

  • Kneller, E.A. and van Keken, P.E., Effect of Three-Dimensional Slab Geometry on Deformation in the Mantle Wedge: Implications for Shear Wave Anisotropy, Geochem. Geophys. Geosystem, 2008, vol. 9, Q01003. doi: 10.1029/2007GC001677.

    Article  Google Scholar 

  • Korenaga, J., Thermal Cracking and the Deep Hydration of Oceanic Lithosphere: A Key to the Generation of Plate Tectonics, J. Geophys. Res., 2007, vol. 112, B05408. doi: 10.1029/2006JB004502.

    Article  Google Scholar 

  • Korenaga, J. and Karato, S., A New Analysis of Experimental Data on Olivine Rheology, J. Geophys. Res., 2008, vol. 113, p. B02403. doi: 10.1029/2007JB005100.

    Article  Google Scholar 

  • Lee, C., Han, Sh., and Steinberger, B., Influence of Variable Uncertainties in Seismic Tomography Models on Constraining Mantle Viscosity from Geoid Observations, Phys. Earth Planet. Inter., 2011, vol. 184, nos. 1–2, pp. 51–62.

    Article  Google Scholar 

  • Lockner, D.A., Rock Failure, in Rock Physics and Phase Relations. A Handbook of Physical Constants, Ahrens, T.J., Ed., Washington, DC: American Geophysical Union, 1995, pp. 127–147.

    Chapter  Google Scholar 

  • McNamara, A., Karato, Sh., and Keken, P., Localization of Dislocation Creep in the Lower Mantle: Implication for the Origin of Sesismic Anisotropy, Earth Planet. Sci. Lett., 2001, vol. 191, pp. 85–99.

    Article  Google Scholar 

  • Mei, S., Suzuki, A.M., Kohlstedt, D.L., Dixon, N.A., and Durham, W., Experimental Constraints on the Strength of the Lithospheric Mantle, J. Geophys. Res., 2010, vol. 115, p. B08204. doi: 10.1029/2009JB006873.

    Article  Google Scholar 

  • Moresi, L.N. and Solomatov, V.S., Numerical Investigation of 2D Convection with Extremely Large Viscosity Variations, Phys. Fluids, 1995, vol. 7, pp. 2154–2162.

    Article  Google Scholar 

  • Moresi, L., Zhong, S.J., and Gurnis, M., The Accuracy of Finite Element Solutions of Stokes’ Flow with Strongly Varying Viscosity, Phys. Earth Planet. Inter., 1996, vol. 97, pp. 83–94.

    Article  Google Scholar 

  • Moresi, L.-N. and Solomatov, V., Mantle Convection with a Brittle Lithosphere: Thoughts on the Global Tectonic Styles of the Earth and Venus, Geophys. J. Int., 1998, vol. 133, pp. 669–682.

    Article  Google Scholar 

  • O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T.H., and Lee, C., Episodic Precambrian Subduction, Earth Planet. Sci. Lett., 2007, vol. 262, pp. 552–562.

    Article  Google Scholar 

  • O’Neill, C., Lenardic, A., and Jellinek, A., Plate Tectonics or not: Lithospheric Stress on Terrestrial Planets and Super-Earths, in Lunar Planet. Sci., New York, 2008, vol. 38.

  • Peltier, W.R., Postglacial Variations in the Level of the Sea: Implications for Climate Dynamics and Solid Earth Geophysics, Rev. Geophys., 1998, vol. 36, no. 4, pp. 603–689.

    Article  Google Scholar 

  • Ranalli, G., Rheology of the Earth, 2nd ed., Chapman and Hall: London, 1995.

    Google Scholar 

  • Richards, M.A., Yang, W.S., Baumgardner, J.R., and Bunge, H.P., Role of a Low-Viscosity Zone in Stabilizing Plate Tectonics: Implications for Comparative Terrestrial Planetology, Geochem. Geophys. Geosystem., 2001, vol. 2, no. 8, GC000115. doi: 10.1029/2000GC000115

    Google Scholar 

  • Schubert, G., Turcotte, D.L., and Olson, P., Mantle Convection in the Earth and Planets, Cambridge: Cambridge Univ., 2001.

    Book  Google Scholar 

  • Stacey, F.D. and Davis, P.M., Physics of the Earth, 4th ed., Cambridge: Cambridge Univ., 2008.

    Google Scholar 

  • Stegman, D.R., Freeman, J., Schellait, W.P., Moresi, L., and May, D., Influence of Trench Width on Subduction Hinge Retreat Rates in 3-D Models of Slab Rollback, Geochem. Geophys. Geosys., 2006, vol. 7, no. 3, p. Q03012. doi: 10.1029/2005GC001056.

    Article  Google Scholar 

  • Tackley, P., Self-Consistent Generation of Tectonic Plates in Three-Dimensional Mantle Convection, Earth Planet. Sci. Lett., 1998, vol. 157, pp. 9–22.

    Article  Google Scholar 

  • Tackley, P., The Quest for Self-Consistent Generation of Plate Tectonics in Mantle Convection Models, in History and Dynamics of Global Plate Motions. Geophys. Monograph Ser., Richards, M.A., Gordon, R., and Van Der Hilst, R., Eds., Washington, DC: AGU, 2000, vol. 121.

    Google Scholar 

  • Turcotte, D. and Schubert, G., Geodynamics, New York: Wiley, 1982.

    Google Scholar 

  • Trompert, R. and Hansen, U., Mantle Convection Simulations with Rheologies That Generate Platelike Behavior, Nature, 1998, vol. 395, pp. 686–689.

    Article  Google Scholar 

  • Trubitsyn, V.P., Principles of the Tectonics of Floating Continents, Izv. Phys. Earth, 2000, vol. 36, no. 9, pp. 708–471.

    Google Scholar 

  • Trubitsyn, V.P., Tectonics of Floating Continents, Vestnik Ross. Akad. Nauk, 2005, no. 1, pp. 10–21.

  • Trubitsyn, V.P., Geodynamic Model of the Evolution of the Pacific Ocean, Izv. Phys. Earth, 2006, vol. 42, no. 2, pp. 93–113.

    Article  Google Scholar 

  • Trubitsyn, V.P., Equations of Thermal Convection for a Viscous Compressible Mantle of the Earth Including Phase Transitions, Izv. Phys. Earth, 2008, no. 12, vol. 44, pp. 1018–1026.

    Article  Google Scholar 

  • Trubitsyn, V.P., Seismic Tomography and Continental Drift, Izv. Phys. Earth, 2008, vol. 44, no. 11, pp. 857–872.

    Article  Google Scholar 

  • Trubitsyn, V.P., Evseev, A.N., Baranov, A.A., and Trubitsyn, A.P., Phase Transition Zone Width Implications for Convection Structure, Izv. Phys. Earth, 2008, vol. 44, no. 8, pp. 603–614.

    Article  Google Scholar 

  • Trubitsyn, V.P., Control Gear for Oceanic Tectonic Plates, Dokl. Ross. Akad. Nauk, 2010, vol. 434, no. 1, pp. 1205–1207.

    Google Scholar 

  • Trubitsyn, V.P., A Numerical Experiment Reproducing Convection in the Mantle with the Generation and Evolution of Lithospheric Plates, Plumes, and Superplumes, Dokl. Ross. Akad. Nauk, 2010, vol. 434, no. 2, pp. 1370–1372.

    Google Scholar 

  • Trubitsyn, V.P., Evolutionary Models of Floating Continents, Rus. J. Earth Sci., 2004, vol. 6, no. 5, pp. 311–322. http://elpub.wdcb.ru/journals/rjes/v06/tje04147/tje04147.pdf

    Article  Google Scholar 

  • van Hunen, J., van den Berg, A., and Vlaar, N., Various Mechanisms to Induce Present-Day Shallow Flat Subduction and Implications for the Younger Earth: A Numerical Parameter Study, Phys. Earth Planet. Inter., 2004, vol. 146, pp. 179–194.

    Article  Google Scholar 

  • Yamazaki, D. and Karato, S., Some Mineral Physics Constraints on the Rheology and Geothermal Structure of Earth’s Lower Mantle, Am. Mineral., 2001, vol. 86, pp. 385–391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Trubitsyn.

Additional information

Original Russian Text © V.P. Trubitsyn, 2012, published in Fizika Zemli, 2012, No. 6, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trubitsyn, V.P. Rheology of the mantle and tectonics of the oceanic lithospheric plates. Izv., Phys. Solid Earth 48, 467–485 (2012). https://doi.org/10.1134/S1069351312060079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351312060079

Keywords

Navigation