Skip to main content
Log in

Temperature dependence of the establishment time of the vacancy equilibrium in simple crystals

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Establishment times of vacancy equilibrium t* in spherical samples of simple crystals of radius R due to thermal motion of atoms during the process maximally approached to the equilibrium upon lowering the temperature from the melting point to the current value T have been calculated. It has been found that (i) with a decrease in T, the equilibrium time t* exponentially increases, and (ii) with a decrease in the sample radius R, the time t* exponentially decreases. The general tendency toward increase in the time t* due to lowering the temperature overlaps the effect of decreasing sample size R; therefore, for any small samples, the temperature range T < T*, for which the diffusion process is almost frozen, always exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ya. I. Frenkel’, Introduction to the Theory of Metals (GITTL, Moscow, 1950) [in Russian].

    Google Scholar 

  2. C. Kitel, Introduction to Solid State Physics (Wiley, New York, 1976; Nauka, Moscow, 1978).

    Google Scholar 

  3. L. Zhirifalko, Statistical Physics of Materials (Wiley, New York, 1973; Mir, Moscow, 1975).

    Google Scholar 

  4. K. P. Gurov, B. A. Kartashkin, and Yu. E. Ugaste, Mutual Diffusion in Multiphase Metallic Systems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  5. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  6. A. I. Gusev and A. A. Rempel’, Nanocrystalline Materials (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  7. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids (Metallurgiya, Moscow, 1974; Oxonian, New Delhi, 1985).

    Google Scholar 

  8. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2009; Intellekt, Dolgoprudnyi, Moscow oblast, 2011).

    Google Scholar 

  9. G. Neumann and C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data (Pergamon, London, 2009).

    Google Scholar 

  10. N. P. Tishchenko, Phys. Status Solidi A 73, 279 (1982).

    Article  ADS  Google Scholar 

  11. V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals: Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian]

    Google Scholar 

  12. J. Crank, The Mathematics of Diffusion (Clarenton, Oxford, 1975).

    Google Scholar 

  13. A. Berne, G. Boato, and M. De Paz, Nuovo Cimento 24, 1179 (1962).

    Article  Google Scholar 

  14. A. Berne, G. Boato, and M. De Paz, Nuovo Cimento 46, 182 (1966).

    Article  Google Scholar 

  15. N. H. Nachtrieb, E. Catalano, and J. A. Weil, J. Chem. Phys. 20, 1185 (1952).

    Article  ADS  Google Scholar 

  16. J. N. Mundy, L. W. Barr, and F. A. Smith, Philos. Mag. 15, 411 (1967).

    Article  ADS  Google Scholar 

  17. T. S. Lundy and J. F. Murdock, J. Appl. Phys. 33, 1671 (1962).

    Article  ADS  Google Scholar 

  18. S. J. Rothman, N. L. Peterson, and J. T. Robinson, Phys. Status Solidi 39, 635 (1970).

    Article  Google Scholar 

  19. Ch. Herzig, H. Eckseler, W. Bussmann, and D. Cardis, J. Nucl. Mater. 69/70, 61 (1978).

    Article  ADS  Google Scholar 

  20. S. J. Rothman and N. L. Peterson, Phys. Status Solidi 35, 305 (1969).

    Article  Google Scholar 

  21. Yu. K. Tovbin, Russ. J. Phys. Chem. A 87(7), 1083 (2013).

    Article  Google Scholar 

  22. Yu. K. Tovbin, Theory of Physical Chemistry Processes at a Gas-Solid Interface (Nauka, Moscow, 1990; CRC Press, Boca Raton, Florida, 1991).

    Google Scholar 

  23. M. Beyeler and Y. Adda, J. Phys. (Paris) 29, 345 (1968).

    Article  Google Scholar 

  24. T. E. Volin and R. W. Balluffi, Phys. Status Solidi 25, 163 (1968).

    Article  Google Scholar 

  25. R. Messer, S. Dais, and D. Wolf, in Proceedings of the 18th Ampere Congress, Nottingham, 1974, Ed. by P. S. Allen, E. R. Andrews, and C. A. Bates, p. 327.

  26. S. Dais, R. Messer, and A. Seeger, Mater. Sci. Forum 15, 18419 (1987).

    Google Scholar 

  27. D. F. Holcomb and R. E. Norberg, Phys. Rev. 98, 1074 (1955).

    Article  ADS  Google Scholar 

  28. J. N. Mundy, Phys. Rev. B: Solid State 3, 2431 (1971).

    Article  ADS  Google Scholar 

  29. G. Brunger, O. Kanert, and D. Wolf, Solid State Commun. 33, 569 (1980).

    Article  ADS  Google Scholar 

  30. G. Neumann and V. Tolle, Philos. Mag. A 61, 563 (1990).

    Article  ADS  Google Scholar 

  31. M. Neumann, P. Scharwaechter, A. Seeger, W. Frank, K. Freitag, M. Konuma, and G. Majer, Diffus. Defect Data, Part A 143–147, 85 (1997).

    Article  Google Scholar 

  32. E. H. C. Parker, H. R. Clyde, and B. L. Smith, Phys. Rev. 176, 1107 (1968).

    Article  ADS  Google Scholar 

  33. A. Ivens and R. Roulings, in Thermally Activated Processes in Crystals (Mir, Moscow, 1973), p. 172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Original Russian Text © Yu.K. Tovbin, V.N. Komarov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 2, pp. 337–342.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tovbin, Y.K., Komarov, V.N. Temperature dependence of the establishment time of the vacancy equilibrium in simple crystals. Phys. Solid State 56, 341–346 (2014). https://doi.org/10.1134/S1063783414020292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414020292

Keywords

Navigation