Skip to main content
Log in

N-particle Bogoliubov vacuum state

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

We consider the Bogoliubov vacuum state in the number-conserving Bogoliubov theory proposed by Castin and Dum [Phys. Rev. A 57, 3008 (1998)]. We show that, in the particle representation, the vacuum can be written in a simple diagonal form. The vacuum state can describe the stationary N-particle ground state of a condensate in a trap, but it can also represent a dynamical state when, for example, a Bose-Einstein condensate initially prepared in the stationary ground state is subject to a time-dependent perturbation. In both cases the diagonal form of the Bogoliubov vacuum can be obtained by basically diagonalizing the reduced single-particle density matrix of the vacuum. We compare N-body states obtained within the Bogoliubov theory with the exact ground states in a 3-site Bose-Hubbard model. In this example, the Bogoliubov theory fails to accurately describe the stationary ground state in the limit when N → ∞ but a small fraction of depleted particles is kept constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  2. M. H. Anderson, J. R. Ensher, M. R. Matthews, et al., Science 269, 198 (1995); K. B. Davis, M.-O. Mewes, M. R. Andrews, et al., Phys. Rev. Lett. 75, 3969 (1995).

    ADS  Google Scholar 

  3. Y. Castin, in Les Houches Session LXXII, Coherent Atomic Matter Waves 1999, Ed. by R. Kaiser, C. Westbrook, and F. David (Springer, New York, 2001).

    Google Scholar 

  4. H. Nozieres and D. Pines, The Theory of Quantum Liquids (Addison Wesley, New York, 1990).

    Google Scholar 

  5. M. D. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. D. Girardeau, Phys. Rev. A 58, 775 (1998).

    Article  ADS  Google Scholar 

  7. C. W. Gardiner, Phys. Rev. A 56, 1414 (1997).

    Article  ADS  Google Scholar 

  8. Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998).

    Article  ADS  Google Scholar 

  9. J. Dziarmaga and K. Sacha, Phys. Rev. A 67, 033608 (2003).

    Google Scholar 

  10. J. Dziarmaga, Z. P. Karkuszewski, and K. Sacha, J. Phys. B: At. Mol. Opt. Phys. 36, 1217 (2003).

    Article  ADS  Google Scholar 

  11. J. Dziarmaga and K. Sacha, J. Phys. B: At. Mol. Opt. Phys. (in press).

  12. V. I. Yukalov, private communication.

  13. J. Javanainen, Phys. Rev. A 60, 4902 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziarmaga, J., Sacha, K. N-particle Bogoliubov vacuum state. Laser Phys. 16, 1134–1139 (2006). https://doi.org/10.1134/S1054660X0607019X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X0607019X

PACS numbers

Navigation