Skip to main content
Log in

On the applicability of the one-dimensional model of diffusion ionization to the three-dimensional Rydberg hydrogen atom in a microwave field

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The temporal dynamics of the three-dimensional hydrogen atom under the action of an external electric field is studied by using an analytic model and a numerical simulation. In the stationary case, analytic expressions for determining the evolution of angular momentum L of the Rydberg electron (RE) are obtained and significant oscillations of L are noted. Under conditions of the dynamical chaos regime stimulated by a linearly polarized microwave field, additional specific features of the evolution of L are found with the help of unification of the equations of motion and numerical calculations. The role of L in the formation of diffusion ionization of the RE is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Zaslavskii’ and R. Z. Sagdeev, Introduction to Nonlinear Physics (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  2. G. M. Zaslavskii, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov, Weak Chaos and Quasi-Regular Structures (Nauka, Moscow, 1991) [in Russian].

    Book  Google Scholar 

  3. A. L. Belov and V. P. Krainov, Zh. Eksp. Teor. Fiz. 92, 456 (1987).

    Google Scholar 

  4. A. S. Roshchupkin and V. P. Krainov, Zh. Eksp. Teor. Fiz. 114, 37 (1998).

    Google Scholar 

  5. N. N. Bezuglov, V. M. Borodin, A. Ekers, and A. N. Klyucharev, Opt. Spectrosc. 93(5), 661 (2002).

    Article  ADS  Google Scholar 

  6. V. P. Krainov, JETP 111, 171 (2010).

    Article  ADS  Google Scholar 

  7. C. Bracher, T. Kramer, and J. B. Delos, Phys. Rev. A 73, 062114 (2006).

    Article  ADS  Google Scholar 

  8. K. A. Mitchell and J. P. Handlay, et al., Phys. Rev. A 70, 043407 (2004).

    Article  ADS  Google Scholar 

  9. M. Yu. Zakharov, N. N. Bezuglov, A. N. Klyucharev, et al., Khim. Fiz. 30, 2 (2011).

    Google Scholar 

  10. E. I. Dashevskaya, I. Litvin, E. E. Nikitin, et al., Phys. Chem. Chem. Phys. 4, 3330 (2002).

    Article  Google Scholar 

  11. K. Miculis, I. I. Beterov, N. N. Bezuglov, et al., J. Phys. B: At. Mol. Opt. Phys. 38, 1811 (2005).

    Article  ADS  Google Scholar 

  12. A. A. Ishkhanyan and V. P. Krainov, JETP 113, 407 (2011).

    Article  ADS  Google Scholar 

  13. N. B. Delone, V. P. Krainov, and D. L. Shepelyanskii, Usp. Fiz. Nauk 140, 335 (1983).

    Article  ADS  Google Scholar 

  14. D. U. Matrasulov, Phys. Rev. A. 60, 700 (1999).

    Article  ADS  Google Scholar 

  15. V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989).

    Book  MATH  Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Mechanics (Pergamon Press, New York, 1969).

    Google Scholar 

  17. B. Kaulakys and G. Vilutis, Phys. Scr. 59, 251 (1999).

    Article  ADS  Google Scholar 

  18. M. Alaburda, V. Gontis, and B. Kaulakys, Interaction and Chaotic Dynamics of the Classical Hydrogen Atom in an Electromagnetic Field // arXiv:, 1001.0689v1[nlin.CD].

  19. E. Hairer, Numerical Geometric Integration (Universite de Geneve, Geneve, 1999).

    Google Scholar 

  20. D. K. Efimov, N. N. Bezuglov, A. N. Klyucharev, et al., Opt. Spectrosc. 117, 8 (2014).

    Article  ADS  Google Scholar 

  21. G. S. Balaraman and D. Vrinceanu, Phys. Lett. A 369, 188 (2007).

    Article  ADS  Google Scholar 

  22. S. -I. Chua and D. A. Telnov, Phys. Rev. 390, 1.

  23. L. D. Landau and E. M. Lifshits, Quantum Mechanics: Non-relativistic Theory (Pergamon Press, New York, 1977).

    Google Scholar 

  24. V. S. Lisitsa, Usp. Fiz. Nauk 153, 379 (1987).

    Article  MathSciNet  Google Scholar 

  25. N. B. Delone and V. P. Krainov, Nonlinear Ionization of Atoms by Laser Radiation (Fizmatgiz, Moscow, 2001) [in Russian].

    Google Scholar 

  26. G. V. Golubkov and A. Z. Devdariani, Khim. Fiz. No. 11, 31 (2011).

    Google Scholar 

  27. L. Moorman and D. Richards, Phys. Rev. Lett. 68, 468 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Efimov.

Additional information

Original Russian Text © D.K. Efimov, N.N. Bezuglov, A.N. Klyucharev, K. Miculis, 2014, published in Optika i Spektroskopiya, 2014, Vol. 117, No. 6, pp. 888–895.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, D.K., Bezuglov, N.N., Klyucharev, A.N. et al. On the applicability of the one-dimensional model of diffusion ionization to the three-dimensional Rydberg hydrogen atom in a microwave field. Opt. Spectrosc. 117, 861–868 (2014). https://doi.org/10.1134/S0030400X14120066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14120066

Keywords

Navigation