Skip to main content
Log in

Algebraic approach to thermodynamic properties of diatomic molecules

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A simple model extending Lie algebraic techniques is applied to the analysis of thermodynamic vibrational properties of diatomic molecules. Local anharmonic effects are described by means of a Morse-like potential and the corresponding anharmonic bosons are associated with the SU(2) algebra. The total number of anharmonic bosons, fixed by the potential shape, is determined for a large number of diatomic molecules. A vibrational high-temperature partition function and the related thermodynamic functions are derived and studied in terms of the parameters of the model. The idea of a critical temperature is introduced in relation to the specific heat. A physical interpretation in terms of a quantum deformation associated with the model is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iachello and A. Arima, The Interacting Boson Model (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  2. A. Frank and P. van Isacker, Algebraic Methods in Molecular and Nuclear Structure Physics (Wiley, New York, 1994).

    Google Scholar 

  3. F. Iachello and R. D. Levine, Algebraic Theory of Molecules (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  4. F. Iachello, Chem. Phys. Lett. 78, 581 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  5. F. Iachello and R. D. Levine, J. Chem. Phys. 77, 3046 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  6. O. S. van Roosmalen, F. Iachello, R. D. Levine, and A. E. Dieperink, J. Chem. Phys. 79, 2515 (1983).

    ADS  MathSciNet  Google Scholar 

  7. O. S. van Roosmalen, I. Benjamin, and R. D. Levine, J. Chem. Phys. 81, 5986 (1984).

    ADS  Google Scholar 

  8. F. Iachello and S. Oss, Phys. Rev. Lett. 66, 2976 (1991).

    Article  ADS  Google Scholar 

  9. F. Iachello and S. Oss, Chem. Phys. Lett. 187, 500 (1991).

    Article  ADS  Google Scholar 

  10. F. Iachello and S. Oss, Chem. Phys. Lett. 205, 285 (1993).

    Article  Google Scholar 

  11. R. Lemus and A. Frank, Chem. Phys. 242, 25 (1999).

    Article  Google Scholar 

  12. M. Carvajal, R. Lemus, A. Frank, et al., Chem.Phys. 260, 105 (2000).

    Article  Google Scholar 

  13. R. Lemus and A. Frank, Chem. Phys. 101, 8321 (1994).

    ADS  Google Scholar 

  14. A. Frank, R. Lemus, R. Bijker, et al., Ann. Phys. (N.Y.) 252, 211 (1996).

    Article  ADS  Google Scholar 

  15. F. Pérez-Bernal, J. M. Arias, A. Frank, et al., J. Mol. Spectrosc. 184, 1 (1997).

    Google Scholar 

  16. S. Oss, Adv. Chem. Phys. 43, 455 (1996).

    Google Scholar 

  17. A. Frank, R. Lemus, M. Carvajal, et al., Chem. Phys. Lett. 308, 91 (1999).

    Article  Google Scholar 

  18. R. Lemus and A. Frank, Chem. Phys. Lett. 242, 25 (1999).

    Google Scholar 

  19. R. Lemus and A. Frank, Chem. Phys. Lett. (in press).

  20. F. Yachello and S. Oss, Eur. Phys. J. D 19, 307 (2002).

    ADS  Google Scholar 

  21. M. Angelova, V. Dobrev, and A. Frank, J. Phys. A 34, L503 (2001); cond-mat/0105193.

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1950; Inostrannaya Literatura, Moscow, 1949), Vol. 2.

    Google Scholar 

  23. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, 1964; Nauka, Moscow, 1979).

    Google Scholar 

  24. M. Angelova and A. Frank, in Proceedings of the 6th International Wigner Symposium, Istanbul, 2002, Ed. by M. Arik et al. (Bogaziçi Univ. Press, Istanbul, 2002), Vol. 2, p. 543; cond-mat/0105554.

    Google Scholar 

  25. M. Angelova and A. Frank, in Book of Abstracts of the XIII International Congress of Mathematical Physics, 2000, p. 20.

  26. M. Angelova and A. Frank, in Proceedings of the 2nd International Symposium on Quantum Theory and Symmetries, Cracow, 2001 (World Sci., Singapore, 2002), p. 243.

    Google Scholar 

  27. R. Bowley and M. Sánchez, Introductory Statistical Mechanics (Clarendon, Oxford, 1999).

    Google Scholar 

  28. D. Kusnetzov, J. Chem. Phys. 101, 2289 (1994).

    ADS  Google Scholar 

  29. CRC Handbook of Chemistry and Physics, 84th ed., Ed. by D. R. Lide (CRC Press, LLC, 2003).

    Google Scholar 

  30. M. Arik and D. D. Coon, J. Math. Phys. 17, 524 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  31. L. C. Biedenharn, J. Phys. A 22, L873 (1989).

    ADS  MATH  MathSciNet  Google Scholar 

  32. A. J. Macfarlane, J. Phys. A 22, 4581 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 68, No. 10, 2005, pp. 1689–1697.

Original English Text Copyright © 2005 by Angelova, Frank.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelova, M., Frank, A. Algebraic approach to thermodynamic properties of diatomic molecules. Phys. Atom. Nuclei 68, 1625–1633 (2005). https://doi.org/10.1134/1.2121908

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2121908

Keywords

Navigation