Mott-Insulator States of Ultracold Atoms in Optical Resonators

Jonas Larson, Bogdan Damski, Giovanna Morigi, and Maciej Lewenstein
Phys. Rev. Lett. 100, 050401 – Published 4 February 2008

Abstract

We study the low temperature physics of an ultracold atomic gas in the potential formed inside a pumped optical resonator. Here, the height of the cavity potential, and hence the quantum state of the gas, depends not only on the pump parameters, but also on the atomic density through a dynamical ac-Stark shift of the cavity resonance. We derive the Bose-Hubbard model in one dimension and use the strong coupling expansion to determine the parameter regime in which the system is in the Mott-insulator state. We predict the existence of overlapping, competing Mott-insulator states, and bistable behavior in the vicinity of the shifted cavity resonance, controlled by the pump parameters. Outside these parameter regions, the state of the system is in most cases superfluid.

  • Figure
  • Figure
  • Received 21 August 2006

DOI:https://doi.org/10.1103/PhysRevLett.100.050401

©2008 American Physical Society

Authors & Affiliations

Jonas Larson1, Bogdan Damski2, Giovanna Morigi3, and Maciej Lewenstein1,4

  • 1ICFO-Institut de Ciències Fotòniques, E-08860 Castelldefels, Barcelona, Spain
  • 2Theory Division, Los Alamos National Laboratory, MS-B213, Los Alamos, New Mexico 87545, USA
  • 3Departament de Física, Grup d’Óptica, Universitat Autónoma de Barcelona, E-08193 Bellaterra, Spain
  • 4ICREA-Institució Catalana di Recerca i Estudis Avançats, Pg Lluís Companys 23, E-08010 Barcelona, Spain

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 100, Iss. 5 — 8 February 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×