Paper The following article is Open access

Mechanical and degradation properties of zinc adopted magnesium alloys for biomedical application

, , , , and

Published under licence by IOP Publishing Ltd
, , Citation I P Nanda et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 602 012094 DOI 10.1088/1757-899X/602/1/012094

1757-899X/602/1/012094

Abstract

The demand for short-term degradable implant in bone fixation applications is growing steadily due to the aging population worldwide. Degradable implants have the advantage that the second surgery for implant removal is not required. Magnesium is one of the best candidates because it is biodegradable, physiologically compatible and even stimulates bone reconstruction. However, the high degradation rate of pure magnesium in human body fluids may prevent its wider application. In this study, Zinc (Zn) was added in magnesium (Mg) to improve its properties. The effects of five different weight percentage of Zinc (2%, 4%, 6%, 8%, 10%) were investigated. The microstructure and mechanical properties evolution of the alloys were characterized and evaluated using optical microscopy, Scanning Electron Microscope (SEM), tensile test and Vickers hardness test, while degradation behavior was examined using electrochemical corrosion test. The binary Mg-Zn cast alloy with 6 wt. % zinc content (labeled as Mg-6Zn) shows optimum mechanical strength with slowest degradation rate.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.