Synthesis 2013; 45(23): 3239-3244
DOI: 10.1055/s-0033-1339849
paper
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of Endocyclic β-Amino Acids with Two Contiguous Stereocenters via Hydrogenation of 3-Alkoxycarbonyl-2-Substituted Quinolines

Zhang-Pei Chen
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. of China   Fax: +86(411)84379220   Email: ygzhou@dicp.ac.cn
,
Zhi-Shi Ye
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. of China   Fax: +86(411)84379220   Email: ygzhou@dicp.ac.cn
,
Mu-Wang Chen
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. of China   Fax: +86(411)84379220   Email: ygzhou@dicp.ac.cn
,
Yong-Gui Zhou*
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. of China   Fax: +86(411)84379220   Email: ygzhou@dicp.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 18 July 2013

Accepted after revision: 25 August 2013

Publication Date:
25 September 2013 (online)


Abstract

An enantioselective iridium-catalyzed hydrogenation of 3-alkoxycarbonyl-2-substituted quinoline derivatives is described. This methodology provides a convenient route to enantiopure endocyclic β-amino acids with two contiguous stereocenters with up to 90% ee.

Supporting Information

 
  • References


    • For selected reviews on β-amino acids, see:
    • 1a Gellman SH. Acc. Chem. Res. 1998; 31: 173
    • 1b Sorochinsky A, Mikami K, Fustero S, Sánchez-Roselló M, Aceña J, Soloshonok V. Synthesis 2011; 3045
    • 1c Cheng RP, Gellman SH, DeGrado WF. Chem. Rev. 2001; 101: 3219
    • 1d Gnad F, Reiser O. Chem. Rev. 2003; 103: 1603
    • 1e Miller JA, Nguyen SB. T. Mini-Rev. Org. Chem. 2005; 2: 39
    • 2a Maison W, Kosten M, Charpy A, Kintscher-Langenhagen J, Schlemminger I, Lutzen A, Westerhoff O, Martens J. Eur. J. Org. Chem. 1999; 2433
    • 2b Christianson LA, Lucero MJ, Appella DH, Klein DA, Gellman SH. J. Comput. Chem. 2000; 21: 763
    • 2c Yamanaka T, Ohkubo M, Kato M, Kawamura Y, Nishi A, Hosokawa T. Synlett 2005; 631
    • 2d Lelais G, Seebach D. Biopolymers 2004; 76: 206
    • 3a Miyata O, Muroya K, Kobayashi T, Yamanaka R, Kajisa S, Koide J, Naito T. Tetrahedron 2002; 58: 4459
    • 3b Forro E, Fulop F. Mini-Rev. Org. Chem. 2004; 1: 93
    • 3c Gais HJ, Loo R, Roder D, Das P, Raabe G. Eur. J. Org. Chem. 2003; 1500
    • 3d O’Brien P, Porter DW, Smith NM. Synlett 2000; 1336
    • 3e Masesane IB, Steel PG. Tetrahedron Lett. 2004; 45: 5007
    • 3f Kiss L, Fulop F. Synlett 2010; 1302
    • 3g Kiss L, Forro E, Fulop F. Tetrahedron Lett. 2006; 47: 2855
    • 3h Kiss L, Kazi B, Forro E, Fueloep F. Tetrahedron Lett. 2008; 49: 339
    • 3i Davis FA, Theddu N. J. Org. Chem. 2010; 75: 3814
    • 3j Kazi B, Kiss L, Forro E, Fulop F. Tetrahedron Lett. 2010; 51: 82
    • 4a Songis O, Didierjean C, Martinez J, Calmes M. Tetrahedron: Asymmetry 2008; 19: 2135
    • 4b Basak RK, Dharuman S, Vankar YD. Tetrahedron Lett. 2012; 53: 4283
    • 4c Davies SG, Osomu I, Walters IA. S. Synlett 1993; 461
    • 4d Aggarwal VK, Roseblade S, Alexander R. Org. Biomol. Chem. 2003; 1: 684
    • 4e Kuhl A, Hahn MG, Dumic M, Mittendorf J. Amino Acids 2005; 29: 89
    • 4f Davies SG, Diez D, Dominguez SH, Garrido NM, Kruchinin D, Price PD, Smith AD. Org. Biomol. Chem. 2005; 3: 1284
    • 4g Yu C.-B, Gao K, Chen Q.-A, Chen M.-W, Zhou Y.-G. Tetrahedron Lett. 2012; 53: 2560

      For selected reviews, see:
    • 5a Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
    • 5b Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 5c Glorius F. Org. Biomol. Chem. 2005; 3: 4171
    • 5d Lu S.-M, Han X.-W, Zhou Y.-G. Chin. J. Org. Chem. 2005; 25: 634
  • 6 Studer M. Monatsh. Chem. 2000; 1335
  • 7 Lei A, Chen M, He M, Zhang X. Eur. J. Org. Chem. 2006; 4343
  • 8 Ren L, Lei T, Ye JX, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 771
  • 9 Shi L, Ye Z.-S, Cao L.-L, Guo R.-N, Hu Y, Zhou Y.-G. Angew. Chem. Int. Ed. 2012; 51: 8286

    • For recent examples on hydrogenation of functionalized quinolines, see:
    • 10a Maj AM, Suisse I, Méliet C, Hardouin C, Agbossou-Niedercorn F. Tetrahedron Lett. 2012; 53: 4747
    • 10b Cai X.-F, Chen M.-W, Ye Z.-S, Guo R.-N, Shi L, Li Y.-Q, Zhou Y.-G. Chem. Asian J. 2013; 8: 1381

    • For selected works on hydrogenation of 2,3-disubstituted quinolines, see:
    • 10c Wang T, Zhuo L.-G, Li Z, Chen F, Ding Z, He Y, Fan Q.-H, Xiang J, Yu Z.-X, Chan AS. C. J. Am. Chem. Soc. 2011; 133: 9878
    • 10d Guo Q.-S, Du D.-M, Xu J. Angew. Chem. Int. Ed. 2008; 47: 759
    • 10e Rueping M, Theissmann T, Raja S, Bats JW. Adv. Synth. Catal. 2008; 350: 1001
    • 10f Wang D.-W, Wang X.-B, Lu S.-M, Yu C.-B, Zhou Y.-G. J. Org. Chem. 2009; 74: 2780
    • 11a Wang D.-S, Zhou Y.-G. Tetrahedron Lett. 2010; 51: 3014
    • 11b Wang D.-S, Tang J, Zhou Y.-G, Chen M.-W, Yu C.-B, Duan Y, Jiang G.-F. Chem. Sci. 2011; 2: 803
    • 11c Chen Q.-A, Gao K, Duan Y, Ye Z.-S, Shi L, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2012; 134: 2442
    • 12a Shen Q, Wang L, Yu J, Liu M, Qiu J, Fang L, Guo F, Tang J. Synthesis 2012; 44: 389
    • 12b Huo M, Kuang Y.-Y, Chen F.-E. Org. Prep. Proced. Int. 2004; 36: 331
    • 13a Wang W.-B, Lu S.-M, Yang P.-Y, Han X.-W, Zhou Y.-G. J. Am. Chem. Soc. 2003; 125: 10536
    • 13b Legault CY, Charette AB. J. Am. Chem. Soc. 2005; 127: 8966
    • 13c Xiao D, Zhang X. Angew. Chem. Int. Ed. 2001; 40: 3425
    • 13d Chi Y, Zhou Y.-G, Zhang X. J. Org. Chem. 2003; 68: 4120
    • 13e Moessner C, Bolm C. Angew. Chem. Int. Ed. 2005; 44: 7564
  • 14 Li C.-Y, Wang X.-B, Sun X.-L, Tang Y, Zheng J.-C, Xu Z.-H, Zhou Y.-G, Dai L.-X. J. Am. Chem. Soc. 2007; 129: 1494
  • 15 Bunce RA, Nago T, Sonobe N. J. Heterocycl. Chem. 2007; 44: 1059