Issue 7, 2018

The influence of the size and symmetry of cations and anions on the physicochemical behavior of organic ionic plastic crystal electrolytes mixed with sodium salts

Abstract

The phase behaviour, ionic conductivity, electrochemical stability and diffusion coefficients of mobile components in three organic ionic plastic crystals (OIPCs): triisobutylmethylphosphonium bis(fluorosulphonyl)amide (P1i444FSI), triisobutylmethylphosphonium bis(trifluromethanesulphonyl)amide (P1i444NTf2) and trimethylisobutylphosphonium bis(trifluoromethanesulphonyl)amide (P111i4NTf2) are compared to study the effect of the anions and cations on phase behaviour and dynamics. The FSI-based OIPC shows lower melting point and higher conductivity values most likely because of the higher degree of charge distributions and weaker ion–ion interactions compared to NTf2 anion-based OIPCs. Cyclic voltammetry of electrolytes consisting of these OIPCs with 70 mol% sodium salt incorporated indicates stable sodium plating/stripping behaviour at 70 and 50 °C for all samples. The magnitude of the peak currents, however, are much higher for the FSI-based electrolyte.

Graphical abstract: The influence of the size and symmetry of cations and anions on the physicochemical behavior of organic ionic plastic crystal electrolytes mixed with sodium salts

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2017
Accepted
21 Jan 2018
First published
25 Jan 2018

Phys. Chem. Chem. Phys., 2018,20, 4721-4731

The influence of the size and symmetry of cations and anions on the physicochemical behavior of organic ionic plastic crystal electrolytes mixed with sodium salts

F. Makhlooghiazad, J. Guazzagaloppa, L. A. O’Dell, R. Yunis, A. Basile, P. C. Howlett and M. Forsyth, Phys. Chem. Chem. Phys., 2018, 20, 4721 DOI: 10.1039/C7CP06971E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements