Issue 1, 2016

Surface induces different crystal structures in a room temperature switchable spin crossover compound

Abstract

We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

Graphical abstract: Surface induces different crystal structures in a room temperature switchable spin crossover compound

Supplementary files

Article information

Article type
Paper
Submitted
23 Sep 2015
Accepted
02 Nov 2015
First published
02 Nov 2015

Dalton Trans., 2016,45, 134-143

Author version available

Surface induces different crystal structures in a room temperature switchable spin crossover compound

D. Gentili, F. Liscio, N. Demitri, B. Schäfer, F. Borgatti, P. Torelli, B. Gobaut, G. Panaccione, G. Rossi, A. Degli Esposti, M. Gazzano, S. Milita, I. Bergenti, G. Ruani, I. Šalitroš, M. Ruben and M. Cavallini, Dalton Trans., 2016, 45, 134 DOI: 10.1039/C5DT03712C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements