Issue 8, 2015

Determination of selenium in serum in the presence of gadolinium with ICP-QQQ-MS

Abstract

Gadolinium (Gd)-based magnetic resonance imaging (MRI) contrasting agents interfere with the determination of selenium (Se) when analysed by single quadrupole inductively coupled plasma-mass spectrometry (ICP-MS). This paper demonstrates that an ICP-triple quadrupole-MS (ICP-QQQ-MS) with oxygen mass shift overcomes Gd++ interference on Se+ and mitigates typically encountered matrix and spectral based interferences. Normal human serum was diluted in a solution containing isopropanol, EDTA, NH4OH and Triton X-100. Samples were unspiked (control) serum; serum spiked with 0.127 μmol L−1 Se or 127 μmol L−1 Gd; and serum spiked with both 0.127 μmol L−1 Se and 127 μmol L−1 Gd. Consideration of collision/reaction gases and conditions for interference mitigation included helium (He); a ‘low’ and ‘high’ hydrogen (H2) flow, and oxygen (O2). The instrument tune for O2 was optimised for effective elimination of interferences via a mass shift reaction of Se+ to SeO+. The ICP-QQQ-MS was capable of detecting trace (>9.34 nmol L−1) levels of Se in serum in the presence of Gd in our simulated post-MRI serum sample. The multi-tune capabilities of the ICP-QQQ-MS may be adapted to eliminate other specific isobaric interferences that cause false positive results in other analyses where the analyte is confounded by doubly charged and/or polyatomic species.

Graphical abstract: Determination of selenium in serum in the presence of gadolinium with ICP-QQQ-MS

Article information

Article type
Paper
Submitted
12 Dec 2014
Accepted
23 Feb 2015
First published
23 Feb 2015
This article is Open Access
Creative Commons BY license

Analyst, 2015,140, 2842-2846

Author version available

Determination of selenium in serum in the presence of gadolinium with ICP-QQQ-MS

D. P. Bishop, D. J. Hare, F. Fryer, R. V. Taudte, B. R. Cardoso, N. Cole and P. A. Doble, Analyst, 2015, 140, 2842 DOI: 10.1039/C4AN02283A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements