Issue 18, 2013

Healing of carbon fibre–epoxy composites using thermoplastic additives

Abstract

The healing efficiency and healing mechanisms of selected insoluble thermoplastics blended into an epoxy resin and its respective carbon fibre–epoxy matrix composite is investigated. The capacity of two reactive thermoplastic additives (polyethylene-co-methacrylic acid (EMAA) and polyethylene-co-glycidyl methacrylate (PEGMA)) and two non-reactive thermoplastics (ethylene vinyl acetate (EVA) and acrylonitrile butadiene styrene (ABS)) to heal cracks in the epoxy resin network and heal delaminations in carbon–epoxy composite is determined. The thermoplastics were able to partially repair the fractured epoxy, although different healing mechanisms were operative. The thermoplastics (except ABS) were partially or completely effective in restoring the mode I interlaminar fracture toughness and fatigue resistance of delaminated composites. The healing efficiency of the thermoplastics, defined by the percentage recovery to the interlaminar fracture toughness of the composites, increased in the order: ABS (lowest), PEGMA, EVA and EMAA (highest). Healing by the reactive EMAA and PEGMA thermoplastics involves a unique pressure delivery mechanism whereas healing by the non-reactive EVA thermoplastic is controlled by its viscosity and adhesion to the fracture surfaces. ABS was ineffective as a healing agent in the composite due to its high viscosity which impeded flow into the delamination crack.

Graphical abstract: Healing of carbon fibre–epoxy composites using thermoplastic additives

Article information

Article type
Paper
Submitted
10 Apr 2013
Accepted
07 May 2013
First published
08 May 2013

Polym. Chem., 2013,4, 5007-5015

Healing of carbon fibre–epoxy composites using thermoplastic additives

K. Pingkarawat, T. Bhat, D. A. Craze, C. H. Wang, R. J. Varley and A. P. Mouritz, Polym. Chem., 2013, 4, 5007 DOI: 10.1039/C3PY00459G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements