Skip to main content

Advertisement

Log in

Hypericin incorporation and localization in fixed HeLa cells for various conditions of fixation and incubation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hypericin is a photosensitizer expressing high affinity for cancerous cells in vivo. Diagnosis of cancer based on hypericin fluorescence imaging has been successfully assessed in several clinical trials. Our final objective will be to evaluate the potential of hypericin fluorescence imaging to improve the efficacy of cervical cancer diagnosis performed on fixed cell smears obtained from liquid-based cytology. For this purpose, the mechanism of hypericin incorporation and localization in fixed HeLa cells using different incubation media and fixation conditions was investigated. Since the duration of fixation may play an important role, the influence of fixation time on hypericin incorporation in fixed HeLa cells was studied. The uptake and distribution of hypericin in fixed HeLa cells were found to be strongly dependent on the hypericin incubation medium: for a polar organic solvent such as the alcohol-based fixative, the localization was essentially perinuclear and nuclear; for cell culture medium supplemented with serum, the localization was cytoplasmic and non-specific; the highest incorporation was observed for the serum-free culture medium but mainly as non-fluorescent aggregates. The hypericin aggregation in the incubation medium, the passive diffusion and the partitioning between the cells and hypericin carriers seemed to be the major factors accounting for these results. The localization was found to be weakly dependent on fixation time, whereas fluctuations of hypericin fluorescence at short fixation time and stabilization after two days of fixation were observed. These results suggest that the fixed cells reached a steady state after two days of fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunol. Cell Biol., 1999, 77, 499–508.

    Article  CAS  PubMed  Google Scholar 

  2. R. M. Martin, H. Leonhardt and M. C. Cardoso, DNA labeling in living cells, Cytometry A, 2005, 67, 45–52.

    Article  PubMed  CAS  Google Scholar 

  3. D. Jocham, H. Stepp and R. Waidelich, Photodynamic diagnosis in urology: State-of-the-art, Eur. Urol., 2008, 53, 1138–1150.

    Article  CAS  PubMed  Google Scholar 

  4. N. Fotinos, M. A. Campo, F. Popowycz, R. Gurny and N. Lange, 5 aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives, Photochem. Photobiol., 2006, 82, 994–1015.

    Article  CAS  PubMed  Google Scholar 

  5. W. W. L. Chin, P. S. P. Thong, R. Bhuvaneswari, K. C. Soo, P. W. S. Heng and M. Olivo, In vivo optical detection of cancer using chlorin e6 - polyvinylpyrrolidone induced fluorescence imaging and spectroscopy, BMC Med. Imaging, 2009, 9, 1–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. G. A. Wagnières, W. M. Star and B. C. Wilson, In vivo fluorescence spectroscopy and imaging for oncological applications, Photochem. Photobiol., 1998, 68, 603–632.

    Article  PubMed  Google Scholar 

  7. A. Uzdensky, V. Iani, L.W. Ma and J. Moan, On hypericin application diagnosis and cancer treatment: Pharmacokinetics and photosensitizing efficiency in nude mice bearingWiDr carcinoma, Med. Laser Appl., 2006, 21, 271–276.

    Article  Google Scholar 

  8. M. Olivo, W. Lau, V. Manivasager, R. Bhuvaneswari, Z. Wei, K. C. Soo, C. Cheng and P. H. Tan, Novel photodynamic diagnosis of bladder cancer: Ex vivo fluorescence cytology using hypericin, Int. J. Oncol., 2003, 23, 1501–1504.

    PubMed  Google Scholar 

  9. L. O. Hamad, A. Vervoorts, T. Hennig and R. Bayer, Ex vivo photodynamic diagnosis to detect malignant cells in oral brush biopsies, Lasers Med. Sci., 2009, 25, 293–301.

    Article  PubMed  Google Scholar 

  10. A. Huygens, A. R. Kamuhabwa, T. Roskams, B. Van Cleynenbreugel, H. Van, Poppel and P. A. M. De Witte, Permeation of hypericin in spheroids composed of different grade transitional cell carcinoma cell lines and normal human urothelial cells, J. Urol., 2005, 174, 69–72.

    Article  CAS  PubMed  Google Scholar 

  11. A. Huygens, I. Crnolatac, J. Develter, B. Van Cleynenbreugel, T. Van, der Kwast and P. A. M. De Witte, Differential accumulation of hypericin in spheroids composed of T-24 transitional cell carcinoma cells expressing different levels of E-cadherin, J. Urol., 2008, 179, 2014–2019.

    Article  CAS  PubMed  Google Scholar 

  12. G. H. Williams, P. Romanowski, L. Morris, M. Madine, A.D. Mills, K. Stoeber, J. Marr, R. A. Laskey and N. Coleman, Improved cervical smears assessment using antibodies against proteins that regulate DNA replication, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 14932–14937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. R. Chen, Y. P. Luo, J. K. Zhang, W. Yang, Z. C. Zhen, L. X. Chen and W. Zhang, Study on immune function of dendritic cells in patients with esophageal carcinoma, World J. Gastroenterol., 2004, 10, 934–939.

    Article  PubMed  PubMed Central  Google Scholar 

  14. International Agency for Research on Cancer, IARC handbooks of cancer prevention, IARC Press, Lyon, 2005, 10, 1–302.

    Google Scholar 

  15. N. Pace and G. Mackinney, Hypericin, the photodynamic pigment from St. John’swort, J. Am. Chem. Soc., 1941, 63, 2570–2574.

    Article  CAS  Google Scholar 

  16. H. Brockmann, Centenary lecture - photodynamically active plant pigments, Proc. Chem. Soc. London, 1957, 11, 304–312.

    Google Scholar 

  17. A. Kamuhabwa, P. Agostinis, B. Ahmed, W. Landuyt, B. Van Cleynenbreugel, H. Van, Poppel and P. A. M. deWitte, Hypericin as a potential phototherapeutic agent in superficial transitional cell carcinoma of the bladder, Photochem. Photobiol. Sci., 2004, 3, 772–780.

    Article  CAS  PubMed  Google Scholar 

  18. C. L. L. Saw, M. Olivo, K. C. Soo and P. W. S. Heng, Delivery of hypericin for photodynamic applications, Cancer Lett., 2006, 241, 23–30.

    Article  CAS  PubMed  Google Scholar 

  19. M. A. D’Hallewin, P. A. De Witte, E. Waelkens, W. Merlevede and L. Baert, Fluorescence detection of flat bladder carcinoma in situ after intravesical instillation of hypericin, J. Urol., 2000, 164, 349–351.

    Article  PubMed  Google Scholar 

  20. M. A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De, Witte and L. Baert, Hypericin-based fluorescence diagnosis of bladder carcinoma, BJU Int., 2002, 89, 760–763.

    Article  PubMed  Google Scholar 

  21. H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan and C. W. S. Cheng, Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?, BJU Int., 2005, 95, 1215–1218.

    Article  PubMed  Google Scholar 

  22. P. S. P. Thong, M. Olivo, W. W. L. Chin, R. Bhuvaneswari, K. Mancer and K. C. Soo, Clinical application of fluorescence endoscopic imaging using hypericin for the diagnosis of human oral cavity lesions, Br. J. Cancer, 2009, 101, 1580–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. H. Lavu, K. Geary, H. R. Fetterman and R. E. Saxton, Pancreatic tumor detection using hypericin based fluorescence spectroscopy and cytology, in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XIV, ed. D. Kessel, Spie-Int Soc Optical Engineering, Bellingham, 2005, pp. 282–290.

    Chapter  Google Scholar 

  24. C. Y. Fu, B. Koon N.G. S. G. Razul, W. W. L. Chin, P. H. Tan, W. K. Lau and M. Olivo, Fluorescence detection of bladder cancer using urine cytology, Int. J. Oncol., 2007, 31, 525–530.

    PubMed  Google Scholar 

  25. E. Peltier, Combination of a histological or cytological fixing agent and one or more photoactivable compounds of the quinone family, in particular hypericin, hypocrellin A and hypocrellin B, 2006, FR0503487 and US Patent Application 20090047704.

    Google Scholar 

  26. D. Dehn, K. C. Torkko and K. R. Shroyer, Human papillomavirus testing and molecular markers of cervical dysplasia and carcinoma, Cancer (Cancer Cytopathol.), 2007, 111, 1–14.

    Article  CAS  Google Scholar 

  27. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  28. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  29. G. Siboni, H. Weitman, D. Freeman, Y. Mazur, Z. Malik and B. Ehrenberg, The correlation between hydrophilicity of hypericins and helianthrone: internalization mechanisms, subcellular distribution and photodynamic action in colon carcinoma cells, Photochem. Photobiol. Sci., 2002, 1, 483–491.

    Article  CAS  PubMed  Google Scholar 

  30. I. Crnolatac, A. Huygens, P. Agostinis, A. R. Kamuhabwa, J. Maes, A. Van, Aerschot and P. A. M. De Witte, In vitro accumulation and permeation of hypericin and lipophilic analogues in 2-D and 3-D cellular systems, Int. J. Oncol., 2007, 30, 319–324.

    CAS  PubMed  Google Scholar 

  31. S. Kascakova, Z. Nadova, A. Mateasik, J. Mikes, V. Huntosova, M. Refregiers, F. Sureau, J. C. Maurizot, P. Miskovsky and D. Jancura, High level of low-density lipoprotein receptors enhance hypericin uptake by U-87 MG cells in the presence of LDL, Photochem. Photobiol., 2008, 84, 120–127.

    CAS  PubMed  Google Scholar 

  32. H. Fraenkelconrat and H. S. Olcott, The reaction of formaldehyde with proteins.5. Cross-linking between amino and primary amide or guanidyl groups, J. Am. Chem. Soc., 1948, 70, 2673–2684.

    Article  CAS  Google Scholar 

  33. M. Y. Feldman, Reactions of nucleic acids and nucleoproteins with formaldehyde, Prog. Nucleic Acid Res. Mol. Biol., 1973, 13, 1–49.

    Article  CAS  PubMed  Google Scholar 

  34. H. Falk and J. Meyer, On the homo-association and heteroassociation of hypericin, Monatsh. Chem., 1994, 125, 753–762.

    Article  CAS  Google Scholar 

  35. L. Burel and P. Jardon, Homo-association of hypericin in water and consequences on its photodynamic properties, J. Chim. Phys. Phys.- Chim. Biol., 1996, 93, 300–316.

    Article  CAS  Google Scholar 

  36. T. Yamazaki, N. Ohta, I. Yamazaki and P. S. Song, Excited-state properties of hypericin - electronic-spectra and fluorescence decay kinetics, J. Phys. Chem., 1993, 97, 7870–7875.

    Article  CAS  Google Scholar 

  37. E. M. Delaey, R. Obermueller, I. Zupko, D. De Vos, H. Falk and P. A. M. de Witte, In vitro study of the photocytotoxicity of some hypericin analogs on different cell lines, Photochem. Photobiol., 2001, 74, 164–171.

    Article  CAS  PubMed  Google Scholar 

  38. V. Senthil, J. W. Longworth, C. A. Ghiron and L. I. Grossweiner, Photosensitization of aqueous model systems by hypericin, Biochim. Biophys. Acta, Gen. Subj., 1992, 1115, 192–200.

    Article  CAS  Google Scholar 

  39. S. Kascakova, M. Refregiers, D. Jancura, F. Sureau, J. C. Maurizot and P. Miskovsky, Fluorescence spectroscopic study of hypericinphotosensitized oxidation of low-density lipoproteins, Photochem. Photobiol., 2005, 81, 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  40. V. Huntosova, L. Alvarez, L. Bryndzova, Z. Nadova, D. Jancura, L. Buriankova, S. Bonneau, D. Brault, P. Miskovsky and F. Sureau, Interaction dynamics of hypericin with low-density lipoproteins and U87-MG cells, Int. J. Pharm., 2010, 389, 32–40.

    Article  CAS  PubMed  Google Scholar 

  41. T. A. Theodossiou, J. S. Hothersall, P. A. De Witte, A. Pantos and P. Agostinis, The Multifaceted Photocytotoxic Profile of Hypericin, Mol. Pharmaceutics, 2009, 6, 1775–1789.

    Article  CAS  Google Scholar 

  42. E. Buytaert, G. Callewaert, N. Hendrickx, L. Scorrano, D. Hartmann, L. Missiaen, J. R. Vandenheede, I. Heirman, J. Grooten and P. Agostinis, Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy, FASEB J., 2006, 20, 756–758.

    Article  CAS  PubMed  Google Scholar 

  43. N. D. Weber, B. K. Murray, J. A. North and S. G. Wood, The antiviral agent hypericin has in vitro activity against HSV-1 through nonspecific association with viral and cellular membranes, Antiviral Chem. Chemother., 1994, 5, 83–90.

    Article  CAS  Google Scholar 

  44. H. Esterbauer, J. Gebicki, H. Puhl and G. Jurgens, The role of lipidperoxidation and antioxidants in oxidative modification of LDL, Free Radical Biol. Med., 1992, 13, 341–390.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vever-Bizet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, T.T.K., Vever-Bizet, C., Bonneau, S. et al. Hypericin incorporation and localization in fixed HeLa cells for various conditions of fixation and incubation. Photochem Photobiol Sci 10, 561–568 (2011). https://doi.org/10.1039/c0pp00324g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00324g

Navigation