Issue 47, 2016

Understanding and tuning the properties of redox-accumulating manganese helicates

Abstract

The pentanuclear Mn complex [Mn53-O)(bpp)6]n+ can access six consecutive total oxidation levels from Mn(II)5 to Mn(III)5. The electronic structure and redox behavior of this cluster are studied computationally and the results are compared with experimental data. The tunability of the redox potential span and of the absolute potential position is explored through systematic modifications of the 3,5-bis(pyridin-2-yl)-pyrazole (Hbpp) ligand. By substitutions with electron-donating and electron-withdrawing groups, the position of the redox events can be shifted by ca. 1 eV, however no ligand modification is predicted to alter the total redox span. By changing the pyridyl groups to benzimidazole groups, yielding the 3,5-bis(benzimidazol-2-yl)pyrazole (H3bbp) ligand, it is predicted that higher oxidation states can be stabilized, from Mn(III)4Mn(IV) up to Mn(IV)5. In this system, the redox span for the same number of redox equivalents accumulated is slightly smaller than that in the original system. The manganese system is compared with its pentanuclear iron analogue that was recently reported to be catalytically active in oxygen evolution (Okamura et al., Nature, 2016, 530, 465). The electronic and structural requirements for utilization of the stored oxidizing equivalents in water oxidation are discussed.

Graphical abstract: Understanding and tuning the properties of redox-accumulating manganese helicates

Supplementary files

Article information

Article type
Paper
Submitted
15 Jul 2016
Accepted
10 Oct 2016
First published
11 Oct 2016

Dalton Trans., 2016,45, 18900-18908

Understanding and tuning the properties of redox-accumulating manganese helicates

V. Krewald and D. A. Pantazis, Dalton Trans., 2016, 45, 18900 DOI: 10.1039/C6DT02800D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements