Issue 48, 2016

Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH

Abstract

The final step of the water formation network on interstellar grain surfaces starting from the H + O2 route is the reaction between H and H2O2. This reaction is known to have a high activation energy and therefore at low temperatures it can only proceed via tunneling. To date, however, no rate constants are available at temperatures below 200 K. In this work, we use instanton theory to compute rate constants for the title reaction with and without isotopic substitutions down to temperatures of 50 K. The calculations are based on density functional theory, with additional benchmarks for the activation energy using unrestricted single-reference and multireference coupled-cluster single-point energies. Gas-phase bimolecular rate constants are calculated and compared with available experimental data not only for H + H2O2 → H2O + OH, but also for H + H2O2 → H2 + HO2. We find a branching ratio where the title reaction is favored by at least two orders of magnitude at 114 K. In the interstellar medium this reaction predominantly occurs on water surfaces, which increases the probability that the two reactants meet. To mimic this, one, two, or three spectator H2O molecules are added to the system. Eley–Rideal bimolecular and Langmuir–Hinshelwood unimolecular rate constants are presented here. The kinetic isotope effects for the various cases are compared to experimental data as well as to expressions commonly used in astrochemical models. Both the rectangular barrier and the Eckart approximations lead to errors of about an order of magnitude. Finally, fits of the rate constants are provided as input for astrochemical models.

Graphical abstract: Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH

Supplementary files

Article information

Article type
Paper
Submitted
20 Sep 2016
Accepted
03 Nov 2016
First published
08 Nov 2016
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2016,18, 33021-33030

Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH

T. Lamberts, P. K. Samanta, A. Köhn and J. Kästner, Phys. Chem. Chem. Phys., 2016, 18, 33021 DOI: 10.1039/C6CP06457D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements