Issue 24, 2015

Tailored gold nanostructure arrays as catalysts for oxygen reduction in alkaline media and a single molecule SERS platform

Abstract

Although plenty of functional nanomaterials are widely applied in science and technology, cost-efficient, controlled and reproducible fabrication of metallic nanostructures is a considerable challenge. Automated electrorefining by scanning electrochemical microscopy (SECM) provides an effective approach to circumvent some drawbacks of traditional homogeneous syntheses of nanoparticles, providing precise control over the amount, time and place of reactant delivery. The precursor is just a raw metal, which is the most economically viable source. This approach ensures reproducibility and the opportunity for fabrication of micropatterns, which can be rapidly analyzed by scanning probe techniques. Here, a cost-effective methodology for the preparation of naked (ligand-free) metallic nanostructures, from polycrystalline gold using a moving microelectrode, is presented. Automated micropatterning of bare gold on indium tin oxide (ITO) demonstrates the versatility of this method to tune the size and shape of the nanostructures. The morphology of the obtained materials and thus their catalytic and plasmonic properties can be tuned using the electrorefining parameters. Programmable fabrication of sample microarrays by microprinting followed by comparative SECM studies or spectroscopic analysis allows quick optimization and characterization for specific purposes. Electrocatalytic oxygen reduction in alkaline media and surface-enhanced Raman spectroscopy (SERS) of single porphycene molecules are presented as model examples.

Graphical abstract: Tailored gold nanostructure arrays as catalysts for oxygen reduction in alkaline media and a single molecule SERS platform

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2015
Accepted
15 May 2015
First published
18 May 2015

Nanoscale, 2015,7, 10767-10774

Author version available

Tailored gold nanostructure arrays as catalysts for oxygen reduction in alkaline media and a single molecule SERS platform

W. Nogala, P. Kannan, S. Gawinkowski, M. Jönsson-Niedziolka, M. Kominiak, J. Waluk and M. Opallo, Nanoscale, 2015, 7, 10767 DOI: 10.1039/C5NR02077H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements