Issue 21, 2014

Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance

Abstract

Au nanorods have been extensively explored in various applications as the template for heterogeneous metallic nanostructures. However, Au bipyramids (AuBPs) have been paid much less attention although they possess an intriguing crystalline structure and extremely superior plasmonic properties which are absent in AuNRs. The state-of-the-art synthesis cannot produce pure AuBPs, which has become a major barrier to their various applications like catalysis since purity is often critical for achieving the desired performance. Herein, we have shown a facile approach to obtain large-scale high-purity AuBPs. The purity of AuBPs can be improved from 30 to 50% for the as-synthesized AuBP solution to over 95% for the purified solution. Site-specific growth of AgPd nanodendrites on multiply twinned AuBPs from core–shell to tipped nanostructures was achieved for the first time by coupling a galvanic replacement with a co-reduction process, which show remarkable catalytic activity in the reduction reaction of 4-nitrophenol (4-NP) by NaBH4. The use of ascorbic acid (AA) as a reductant in the co-reduction process and the intriguing crystalline structure of AuBPs play a critical role in forming these unique structures. We believe that this work would provide a general strategy to prepare high-purity AuBP based trimetallic nanostructures, which offers the opportunity for AuBPs to be widely used in catalysis or other plasmonic-effect related applications in the near future.

Graphical abstract: Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2014
Accepted
26 Aug 2014
First published
28 Aug 2014

Nanoscale, 2014,6, 12971-12980

Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. Fan and W. Ma, Nanoscale, 2014, 6, 12971 DOI: 10.1039/C4NR04190A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements