Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Gene transfer of antisense hypoxia inducible factor-1 α enhances the therapeutic efficacy of cancer immunotherapy

Abstract

Solid tumors meet their demands for nascent blood vessels and increased glycolysis, to combat hypoxia, by activating multiple genes involved in angiogenesis and glucose metabolism. Hypoxia inducible factor-1 (HIF-1) is a constitutively expressed basic helix–loop–helix transcription factor, formed by the assembly of HIF-1α and HIF-1β (Arnt), that is stablized in response to hypoxia, and rapidly degraded under normoxic conditions. It activates the transcription of genes important for maintaining oxygen homeostasis. Here, we demonstrate that engineered down-regulation of HIF-1α by intratumoral gene transfer of an antisense HIF-1α plasmid leads to the down-regulation of VEGF, and decreased tumor microvessel density. Antisense HIF-1α monotherapy resulted in the complete and permanent rejection of small (0.1 cm in diameter) EL-4 tumors, which is unusual for an anti-angiogenic agent where transient suppression of tumor growth is the norm. It induced NK cell-dependent rejection of tumors, but failed to stimulate systemic T cell-mediated anti-tumor immunity, and synergized with B7–1-mediated immunotherapy to cause the NK cell and CD8 T cell-dependent rejection of larger EL-4 tumors (0.4 cm in diameter) that were refractory to monotherapies. Mice cured of their tumors by combination therapy resisted a rechallenge with parental tumor cells, indicating systemic antitumor immunity had been achieved. In summary, whilst intensive investigations are in progress to target the many HIF-1 effectors, the results herein indicate that blocking hypoxia-inducible pathways and enhancing NK-mediated antitumor immunity by targeting HIF-1 itself may be advantageous, especially when combined with cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hockel M et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix Cancer Res 1996 56: 4509–4515

    CAS  PubMed  Google Scholar 

  2. Blancher C, Harris AL . The molecular basis of the hypoxia response pathway: tumor hypoxia as a therapy target Cancer Metast Rev 1998 17: 187–194

    Article  CAS  Google Scholar 

  3. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis Cell 1996 86: 353–364

    Article  CAS  PubMed  Google Scholar 

  4. Brizel DM et al. Tumor oxygenation predicts the likelihood of distant metastases in human soft tissue sarcoma Cancer Res 1996 56: 941–943

    CAS  PubMed  Google Scholar 

  5. Nordsmark M, Overgaard M, Overgaard J . Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck Radiother Oncol 1996 41: 31–39

    Article  CAS  PubMed  Google Scholar 

  6. Semenza GL, Wang GL . A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation Mol Cell Biol 1992 12: 5447–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maxwell PH, Pugh CW, Ratcliffe PJ . Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism Proc Natl Acad Sci USA 1993 90: 2423–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bunn HF, Poyton RO . Oxygen sensing and molecular adaption to hypoxia Physiol Rev 1996 76: 839–885

    Article  CAS  PubMed  Google Scholar 

  9. Wang GL, Semenza GL . General involvement of hypoxia-inducible factor-1 in transcriptional response to hypoxia Proc Natl Acad Sci USA 1993 90: 4304–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang GL, Jiang B-H, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic helix–loop–helix PAS heterodimer regulated by cellular O2 tension Proc Natl Acad Sci USA 1995 92: 5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang BH et al. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1 J Biol Chem 1996 271: 17771–17778

    Article  CAS  PubMed  Google Scholar 

  12. Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW . Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression J Exp Biol 1998 201: 1153–1162

    CAS  PubMed  Google Scholar 

  13. Semenza GL et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1 J Biol Chem 1996 271: 32529–32537

    Article  CAS  PubMed  Google Scholar 

  14. Dachs GU, Stratford IJ . The molecular response of mammalian cells to hypoxia and the potential for exploitation in cancer therapy Br J Cancer 1996 74: S126–S132

    Google Scholar 

  15. Ryan HE, Lo J, Johnson RS . HIF-1α is required for solid tumor formation and embryonic vascularization EMBO J 1998 17: 3005–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iyer NV et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α Genes Dev 1998 12: 149–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhong H et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases Cancer Res 1999 59: 5830–5835

    CAS  PubMed  Google Scholar 

  18. Kallio PJ et al. Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway J Biol Chem 1999 274: 6519–6525

    Article  CAS  PubMed  Google Scholar 

  19. Huang LE, Gu J, Scha M, Bunn HF . Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway Proc Natl Acad Sci USA 1998 95: 7987–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Latif F et al. Identification of the von Hippel-Lindau disease tumor suppressor gene Science 1993 260: 1317–1320

    Article  CAS  PubMed  Google Scholar 

  21. Maxwell PH et al. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis Nature 1999 399: 271–275

    Article  CAS  PubMed  Google Scholar 

  22. Scheibel T, Buchner, J . The Hsp90 complex-a super-chaperone machine as a novel drug target Biochem Pharmacol 1998 56: 675–682

    Article  CAS  PubMed  Google Scholar 

  23. Minet E et al. Hypoxia-induced activation of HIF-1: role of HIF-1 alpha-Hsp90 interaction FEBS Lett 1999 460: 251–256

    Article  CAS  PubMed  Google Scholar 

  24. Iliopoulos O et al. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein Proc Natl Acad Sci USA 1996 93: 10595–10599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaelin WG, Maher ER . The VHL tumor-suppressor gene paradigm Trends Genet 1998 14: 423–426

    Article  CAS  PubMed  Google Scholar 

  26. Kim KJ et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo Nature 1993 362: 841–844

    Article  CAS  PubMed  Google Scholar 

  27. Warren RS et al. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis J Clin Invest 1995 95: 1789–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng S-Y et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor Proc Natl Acad Sci USA 1996 93: 8502–8507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanwar JR et al. Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with B7.1-mediated immunotherapy overcomes immune-resistance and leads to the eradication of large tumors Cancer Res (in press)

  30. Kanwar J, Berg R, Lehnert K, Krissansen GW . Taking lessons from dendritic cells: multiple xenogeneic ligands for leukocyte integrins have the potential to stimulate anti-tumor immunity Gene Therapy 1999 6: 1835–1844

    Article  CAS  PubMed  Google Scholar 

  31. Townsend SE, Allison JP . Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells Science 1993 259: 638–370

    Article  Google Scholar 

  32. Chen L et al. Costimulation of anti-tumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4 Cell 1992 71: 1093–1102

    Article  CAS  PubMed  Google Scholar 

  33. Pedley RB et al. Ablation of colorectal xenografts with combined radioimmunotherapy and tumor blood flow-modifying agents Cancer Res 1996 56: 3293–3300

    CAS  PubMed  Google Scholar 

  34. Finlay GJ, Ching LM, Wilson WR, Baguley BC . Resistance of cultured Lewis lung carcinoma cell lines to tiazofurin J Natl Cancer Inst 1987 79: 291–296

    CAS  PubMed  Google Scholar 

  35. Baguley BC, Ching LM . Immunomodulatory actions of xanthenone anticancer agents BioDrugs 1997 8: 119–127

    Article  CAS  PubMed  Google Scholar 

  36. Cao Y et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases J Clin Invest 1998 101: 1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boehm T, Folkman J, Browder T, O'Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance Nature 1997 390: 404–407

    Article  CAS  PubMed  Google Scholar 

  38. Melder RJ et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium Nat Med 1996 2: 992–997

    Article  CAS  PubMed  Google Scholar 

  39. Ferrara N, Houk L, Jakeman L, Leung DW . Molecular and biological properties of the vascular endothelial cell growth factor family of proteins Endocr Rev 1992 13: 18–32

    Article  CAS  PubMed  Google Scholar 

  40. Borgstrom P, Killan KJ, Sriramarao P, Ferrara N . Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital video microscopy Cancer Res 1996 56: 4032–4039

    CAS  PubMed  Google Scholar 

  41. Saleh M, Stacker SA, Wilks AF . Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence Cancer Res 1996 56: 393–401

    CAS  PubMed  Google Scholar 

  42. Millaruer B et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant Nature 1994 367: 576–579

    Article  Google Scholar 

  43. Kayar SR, Archer PG, Lechher AJ, Banchero N . Evaluation of the concentric circles method for estimating capillary-tissue diffusion distances Microvascular Res 1982 24: 342–353

    Article  CAS  Google Scholar 

  44. Maxwell PH et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth Proc Natl Acad Sci USA 1997 94: 8104–8109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the World Health Organization, the Royal Society of New Zealand, the Wellcome Trust (UK), the Cancer Society of New Zealand, the Health Research Council of New Zealand, the Lottery Grants Board of New Zealand, and the Maurice and Phyllis Paykel Trust. We thank Ms Joanna Stewart (Community Health Department, University of Auckland) for help with statistical analyses.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Kanwar, J., Leung, E. et al. Gene transfer of antisense hypoxia inducible factor-1 α enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther 8, 638–645 (2001). https://doi.org/10.1038/sj.gt.3301388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301388

Keywords

This article is cited by

Search

Quick links