Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic regulation is important for spermatogenesis

Abstract

Male factor infertility is increasing in developed countries, and several factors linked to lifestyle have been shown to negatively affect spermatogenesis. Sertoli cells are pivotal to spermatogenesis, providing nutritional support to germ cells throughout their development. Sertoli cells display atypical features in their cellular metabolism; they can metabolize various substrates, preferentially glucose, the majority of which is converted to lactate and not oxidized via the tricarboxylic acid cycle. Why Sertoli cells preferentially export lactate for germ cells is not entirely understood. However, lactate is utilized as the main energy substrate by developing germ cells and has an antiapoptotic effect on these cells. Several biochemical mechanisms contribute to the modulation of lactate secretion by Sertoli cells. These include the transport of glucose through the plasma membrane, mediated by glucose transporters; the interconversion of pyruvate to lactate by lactate dehydrogenase; and the release of lactate mediated by monocarboxylate transporters. Several factors that modulate Sertoli cell metabolism have been identified, including sex steroid hormones, which are crucial for maintenance of energy homeostasis, influencing the metabolic balance of the whole body. In fact, energy status is essential for normal reproductive function, since the reproductive axis has the capacity to respond to metabolic cues.

Key Points

  • Sertoli cells have multiple roles in germ cell development, ranging from physical support and immunoprotection to the supply of nutrients and other factors

  • Germ cells have specific metabolic needs, which change during their development into spermatozoa, rendering them dependent on the nurturing provided by Sertoli cells

  • Sertoli cells utilize a number of different substrates (including glucose and fatty acids) and pathways to fulfill their metabolic requirements, as well as those of developing germ cells

  • A number of hormones and factors, such as follicle-stimulating hormone, insulin, insulin growth factor-I, epidermal growth factor, paracrine factor P-Mod-S, tri-iodothyronine, basic fibroblast growth factor, cytokines, carnitine, AMP-activated protein kinase, arachidonic acid and sex steroid hormones, are known to be metabolic modulators of Sertoli cells

  • Metabolic status is central to the regulation of the energy demands of the reproductive system, and extreme metabolic disorder conditions (such as obesity) are deleterious to reproductive function

  • The reproductive axis (hypothalamus–pituitary–testis axis) is exceptionally sensitive to energetic imbalance and disturbances of this axis severely affect Sertoli cells functions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of spermatogenesis.
Figure 2: Schematic illustration of Sertoli cell metabolism.

Similar content being viewed by others

References

  1. Jorgensen, N. et al. Regional differences in semen quality in Europe. Hum. Reprod. 16, 1012–1019 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Jorgensen, N. et al. East-West gradient in semen quality in the Nordic-Baltic area: a study of men from the general population in Denmark, Norway, Estonia and Finland. Hum. Reprod. 17, 2199–2208 (2002).

    Article  PubMed  Google Scholar 

  3. Fernandez, M. et al. Semen quality and reproductive hormone levels in men from Southern Spain. Int. J. Androl. 35, 1–10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nordkap, L., Joensen, U. N., Jensen, M. B. & Jorgensen, N. Regional differences and temporal trends in male reproductive health disorders: Semen quality may be a sensitive marker of environmental exposures. Mol. Cell. Endocrinol. http://dx.doi.org/10.1016/j.mce.2011.05.048.

  5. Bustos-Obregón, E. & Hartley, B. Ecotoxicology and testicular damage (environmental chemical pollution): a review. Int. J. Morphol. 26, 833–840 (2008).

    Google Scholar 

  6. Mathur, P. P. & D'Cruz, S. C. The effect of environmental contaminants on testicular function. Asian J. Androl. 13, 1–7 (2011).

    Article  CAS  Google Scholar 

  7. Sharpe, R. M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 1697–1712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goulis, D. G. & Tarlatzis, B. C. Metabolic syndrome and reproduction: I. testicular function. Gynecol. Endocrinol. 24, 33–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Mah, P. M. & Wittert, G. A. Obesity and testicular function. Mol. Cell. Endocrinol. 316, 180–186 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Bonde, J. P. & Storgaard, L. How work place conditions, environmental toxicants and lifestyle affect male reproductive function. Int. J. Androl. 25, 262–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Suehiro, R. M. et al. Testicular Sertoli cell function in male systemic lupus erythematosus. Rheumatology 47, 1692–1697 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Karagiannis, A. & Harsoulis, F. Gonadal dysfunction in systemic diseases. Eur. J. Endocrinol. 152, 501–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Sartorius, G. A. & Handelsman, D. J. in Andrology: Male Reproductive Health and Dysfunction (eds Nieschlag, E., Behre, H. M. & Nieschlag, S.) 339–364 (Springer, Berlin, 2010).

    Book  Google Scholar 

  14. Su, L., Mruk, D. D. & Cheng, C. Y. Drug transporters, the blood-testis barrier and spermatogenesis. J. Endocrinol. 208, 207–223 (2011).

    CAS  PubMed  Google Scholar 

  15. Setchell, B. P. The functional-significance of the blood-testis barrier. J. Androl. 1, 3–10 (1980).

    Article  CAS  Google Scholar 

  16. Wong, C. H. & Cheng, C. Y. The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr. Top. Dev. Biol. 71, 263–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Boussouar, F. & Benahmed, M. Lactate and energy metabolism in male germ cells. Trends Endocrinol. Metab. 15, 345–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Jutte, N., Grootegoed, J., Rommerts, F. & Van der Molen, H. Exogenous lactate is essential for metabolic activities in isolated rat spermatocytes and spermatids. Reproduction 62, 399 (1981).

    Article  CAS  Google Scholar 

  19. Grootegoed, J., Oonk, R., Jansen, R. & Van der Molen, H. Metabolism of radiolabelled energy-yielding substrates by rat Sertoli cells. Reproduction 77, 109 (1986).

    Article  CAS  Google Scholar 

  20. Robinson, R. & Fritz, I. Metabolism of glucose by Sertoli cells in culture. Biol. Reprod. 24, 1032–1041 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Rato, L., Alves, M. G., Socorro, S., Cavaco, J. E. & Oliveira, P. F. in Endothelium and Epithelium: Composition, Functions and Pathology (eds Carrasco, J. & Matheus, M.) 137–155 (Nova Biomedical, New York, 2011).

    Google Scholar 

  22. Mruk, D. D. & Cheng, C. Y. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev. 25, 747–806 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Toyama, Y., Maekawa, M. & Yuasa, S. Ectoplasmic specializations in the Sertoli cell: new vistas based on genetic defects and testicular toxicology. Anat. Sci. Int. 78, 1–16 (2003).

    Article  PubMed  Google Scholar 

  24. Mazaud-Guittot, S. et al. Claudin 11 deficiency in mice results in loss of the Sertoli cell epithelial phenotype in the testis. Biol. Reprod. 82, 202–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Lui, W. Y. & Cheng, C. Y. Regulation of cell junction dynamics by cytokines in the testis: a molecular and biochemical perspective. Cytokine Growth Factor Rev. 18, 299–311 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng, C. Y. & Mruk, D. D. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit. Rev. Biochem. Mol. Biol. 44, 245–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng, C. Y., Wong, E. W., Yan, H. H. & Mruk, D. D. Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: new insights and advances. Mol. Cell. Endocrinol. 315, 49–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Waites, G. & Gladwell, R. Physiological significance of fluid secretion in the testis and blood-testis barrier. Phys. Rev. 62, 624–671 (1982).

    CAS  Google Scholar 

  29. Russell, L. D. The blood-testis barrier and its formation relative to spermatocyte maturation in the adult rat: a lanthanum tracer study. Anat. Rec. 190, 99–111 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Siu, M. K. Y. & Cheng, C. Y. in Molecular Mechanisms in Spermatogenesis (ed. Cheng, C. Y.) 74–91 (Landes Bioscience, Austin, 2009).

    Book  Google Scholar 

  31. Setchell, B. P. The movement of fluids and substances in the testis. Aus. J. Biol. Sci. 39, 193–207 (1986).

    Article  CAS  Google Scholar 

  32. Setchell, B. P. Blood-testis barrier, junctional and transport proteins and spermatogenesis. Adv. Exp. Med. Biol. 636, 212–233 (2009).

    Article  Google Scholar 

  33. Gaemers, I. C. et al. Differential expression pattern of retinoid X receptors in adult murine testicular cells implies varying roles for these receptors in spermatogenesis. Biol. Reprod. 58, 1351–1356 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Hogarth, C. A. & Griswold, M. D. The key role of vitamin A in spermatogenesis. J. Clin. Invest. 120, 956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugimoto, R., Nabeshima, Y. & Yoshida, S. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium. Mech. Dev. 128, 610–624 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Griswold, M. & McLean, D. in Knobil and Neill's Physiology of Reproduction (ed. Neill, J.) 949–975 (Elsevier, San Diego, 2006).

    Book  Google Scholar 

  37. Dym, M. The fine structure of monkey Sertoli cells in the transitional zone at the junction of the seminiferous tubules with the tubuli recti. Am. J. Anat. 140, 1–25 (1974).

    Article  CAS  PubMed  Google Scholar 

  38. Russell, L., Ettlin, R., Sinha Hikim, A. & Clegg, E. Histological and Histopathological Evaluation of the Testis (Cache River Press, Clearwater, 1990).

    Google Scholar 

  39. Russell, L. D., Ren, H. P., Hikim, I. S., Schulze, W. & Hikim, A. P. S. A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell. Am. J. Anat. 188, 21–30 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Weber, J. E., Russell, L. D., Wong, V. & Peterson, R. N. Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli--Sertoli and Sertoli--germ-cell relationships. Am. J. Anat. 167, 163–179 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. O'Donnell, L., Robertson, K., Jones, M. & Simpson, E. Estrogen and spermatogenesis. Endocr. Rev. 22, 289–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hess, R. & de Franca, L. in Molecular Mechanisms in Spermatogenesis (ed. Cheng, C. Y.) 1–15 (Landes Bioscience/Springer Science, Austin, 2008).

    Google Scholar 

  43. Rato, L., Socorro, S., Cavaco, J. & Oliveira, P. F. Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells. J. Memb. Biol. 236, 215–224 (2010).

    Article  CAS  Google Scholar 

  44. Oliveira, P. F., Sousa, M., Barros, A., Moura, T. & Rebelo da Costa, A. Membrane transporters and cytoplasmatic pH regulation on bovine Sertoli cells. J. Memb. Biol. 227, 49–55 (2009).

    Article  CAS  Google Scholar 

  45. Aly, H. A., Lightfoot, D. A. & El-Shemy, H. A. Bacterial lipopolysaccharide-induced oxidative stress in adult rat Sertoli cells in vitro. Toxicol. In Vitro 24, 1266–1272 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Bajpai, M., Gupta, G. & Setty, B. Changes in carbohydrate metabolism of testicular germ cells during meiosis in the rat. Eur. J. Endocrinol. 138, 322–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Setchell, B. P. Hormones: what the testis really sees. Reprod. Fertil. Dev. 6, 535–545 (2004).

    Article  Google Scholar 

  48. Wenger, R. H. & Katschinski, D. M. The hypoxic testis and post-meiotic expression of PAS domain proteins. Semin. Cell Dev. Biol. 16, 547–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Gómez, M. et al. Switches in 6-phosphofructo-2-kinase isoenzyme expression during rat sperm maturation. Biochem. Biophys. Res. Comm. 387, 330–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Courtens, J. L. & Ploen, L. Improvement of spermatogenesis in adult cryptorchid rat testis by intratesticular infusion of lactate. Biol. Reprod. 61, 154–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Erkkila, K., Aito, H., Aalto, K., Pentikainen, V. & Dunkel, L. Lactate inhibits germ cell apoptosis in the human testis. Mol. Hum. Reprod. 8, 109 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura, M., Fujiwara, A., Yasumasu, I., Okinaga, S. & Arai, K. Regulation of glucose metabolism by adenine nucleotides in round spermatids from rat testes. J. Biol. Chem. 257, 13945–13950 (1982).

    CAS  PubMed  Google Scholar 

  53. Yanez, A. J. et al. Expression of key substrate cycle enzymes in rat spermatogenic cells: fructose 1, 6 bisphosphatase and 6 phosphofructose 1-kinase. J. Cell. Physiol. 212, 807–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Beckman, J. K. & Coniglio, J. G. A comparative study of the lipid composition of isolated rat Sertoli and germinal cells. Lipids 14, 262–267 (1979).

    Article  CAS  PubMed  Google Scholar 

  55. Lynch, K. M. Jr & Scott, W. W. Lipid distribution in the Sertoli cell and Leydig cell of the rat testis as related to experimental alterations of the pituitary-gonad system. Endocrinology 49, 8–14 (1951).

    Article  PubMed  Google Scholar 

  56. Retterstøl, K., Tran, T. N., Haugen, T. B. & Christophersen, B. O. Metabolism of very long chain polyunsaturated fatty acids in isolated rat germ cells. Lipids 36, 601–606 (2001).

    Article  PubMed  Google Scholar 

  57. Retterstol, K., Haugen, T. B., Tran, T. N. & Christophersen, B. O. Studies on the metabolism of essential fatty acids in isolated human testicular cells. Reproduction 121, 881–887 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Angulo, C. et al. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C. J. Cell. Biochem. 71, 189–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Carosa, E. et al. Ontogenetic profile and thyroid hormone regulation of type-1 and type-8 glucose transporters in rat Sertoli cells. Int. J. Androl. 28, 99–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Galardo, M. et al. Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1, and bFGF at two different time-points in pubertal development. Cell Tissue Res. 334, 295–304 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Ulisse, S., Jannini, E. A., Pepe, M., De Matteis, S. & D'Armiento, M. Thyroid hormone stimulates glucose transport and GLUT1 mRNA in rat Sertoli cells. Mol. Cell. Endocrinol. 87, 131–137 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Kokk, K. et al. Immunohistochemical detection of glucose transporters class I subfamily in the mouse, rat and human testis. Medicina (Kaunas) 40, 156–160 (2004).

    Google Scholar 

  63. Piroli, G. G. et al. Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J. Comp. Neurol. 452, 103–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Reagan, L. P. et al. Localization and regulation of GLUTx1 glucose transporter in the hippocampus of streptozotocin diabetic rats. Proc. Natl Acad. Sci. USA 98, 2820–2825 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oliveira, P. F. et al. Influence of 5alpha-dihydrotestosterone and 17beta-estradiol on human Sertoli cells metabolism. Int. J. Androl. 34, e612–e620 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Rato, L. et al. Metabolic modulation induced by estradiol and DHT in immature rat Sertoli cells cultured in vitro. Bioscience Reports 32, 61–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Riera, M. F., Galardo, M. N., Pellizzari, E. H., Meroni, S. B. & Cigorraga, S. B. Molecular mechanisms involved in Sertoli cell adaptation to glucose deprivation. Am. J. Physiol. Endocrinol. Metab. 297, 907–914 (2009).

    Article  CAS  Google Scholar 

  68. Galardo, M. N., Riera, M. F., Pellizzari, E. H., Cigorraga, S. B. & Meroni, S. B. The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J. Mol. Endocrinol. 39, 279–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Tosca, L., Chabrolle, C. & Dupont, J. AMPK: a link between metabolism and reproduction? [French]. Med. Sci. 24, 297–300 (2008).

    Google Scholar 

  70. Zhang, B. B., Zhou, G. & Li, C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell. Metab. 9, 407–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Galardo, M. N. et al. Adenosine regulates Sertoli cell function by activating AMPK. Mol. Cell. Endocrinol. 330, 49–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Naimi, M., Arous, C. & Van Obberghen, E. Energetic cell sensors: a key to metabolic homeostasis. Trends Endocrinol. Metab. 21, 75–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Xiong, W. P., Wang, H. K., Wu, H., Chen, Y. M. & Han, D. S. Apoptotic spermatogenic cells can be energy sources for Sertoli cells. Reproduction 137, 469–479 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Leiderman, B. & Mancini, R. E. Glycogen content in the rat testis from postnatal to adult ages. Endocrinology 85, 607–609 (1969).

    Article  CAS  PubMed  Google Scholar 

  75. Slaughter, G. R. & Means, A. R. Follicle-stimulating hormone activation of glycogen phosphorylase in the Sertoli cell-enriched rat testis. Endocrinology 113, 1476–1485 (1983).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, J., Richburg, J. H., Younkin, S. C. & Boekelheide, K. The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138, 2081–2088 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Kaiser, G. R. et al. Metabolism of amino acids by cultured rat Sertoli cells. Metabolism: Clinical and Experimental 54, 515–521 (2005).

    Article  CAS  Google Scholar 

  78. Oonk, R. B., Jansen, R. & Grootegoed, J. A. Differential effects of follicle-stimulating hormone, insulin, and insulin-like growth factor I on hexose uptake and lactate production by rat Sertoli cells. J. Cell. Physiol. 139, 210–218 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Oliveira, P. F. et al. Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells. Bioch. Biophys. Acta 1820, 84–89 (2012).

    Article  CAS  Google Scholar 

  80. Mallea, L. E., Machado, A. J., Navaroli, F. & Rommerts, F. F. Epidermal growth factor stimulates lactate production and inhibits aromatization in cultured Sertoli cells from immature rats. Int. J. Androl. 9, 201–208 (1986).

    Article  CAS  PubMed  Google Scholar 

  81. Mullaney, B. P., Rosselli, M. & Skinner, M. K. Developmental regulation of Sertoli cell lactate production by hormones and the testicular paracrine factor, PModS. Mol. Cell. Endocrinol. 104, 67–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Palmero, S., Prati, M., Bolla, F. & Fugassa, E. Tri-iodothyronine directly affects rat Sertoli cell proliferation and differentiation. J. Endocrinol. 145, 355–362 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Schteingart, H. F., Meroni, S. B., Canepa, D. F., Pellizzari, E. H. & Cigorraga, S. B. Effects of basic fibroblast growth factor and nerve growth factor on lactate production, gamma-glutamyl transpeptidase and aromatase activities in cultured Sertoli cells. Eur. J. Endocrinol. 141, 539–545 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Riera, M. F. et al. Regulation of lactate production by FSH, iL1beta, and TNFalpha in rat Sertoli cells. Gen. Comp. Endocrinol. 122, 88–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Meroni, S. B., Riera, M. F., Pellizzari, E. H., Schteingart, H. F. & Cigorraga, S. B. Possible role of arachidonic acid in the regulation of lactate production in rat Sertoli cells. Int. J. Androl. 26, 310–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Palmero, S., Bottazzi, C., Costa, M., Leone, M. & Fugassa, E. Metabolic effects of L-carnitine on prepubertal rat Sertoli cells. Horm. Metab. Res. 32, 87–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Guma, F. C., Wagner, M., Martini, L. H. & Bernard, E. A. Effect of FSH and insulin on lipogenesis in cultures of Sertoli cells from immature rats. Braz. J. Med. Biol. Res. 30, 591–597 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Riera, M., Meroni, S., Schteingart, H., Pellizzari, E. & Cigorraga, S. Regulation of lactate production and glucose transport as well as of glucose transporter 1 and lactate dehydrogenase A mRNA levels by basic fibroblast growth factor in rat Sertoli cells. J. Endocrinol. 173, 335–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Walker, W. H. Non-classical actions of testosterone and spermatogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 1557–1569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goddard, I. et al. Alteration of lactate production and transport in the adult rat testis exposed in utero to flutamide. Mol. Cell. Endocrinol. 206, 137–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Khan, U. W. & Rai, U. In vitro effect of FSH and testosterone on Sertoli cell nursing function in wall lizard Hemidactylus flaviviridis (Ruppell). Gen. Comp. Endocrinol. 136, 225–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Hurtado de Catalfo, G. E. & de Gomez Dumm, I. N. Influence of testosterone on polyunsaturated fatty acid biosynthesis in Sertoli cells in culture. Cell Biochem. Funct. 23, 175–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Fix, C., Jordan, C., Cano, P. & Walker, W. H. Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells. Proc. Natl Acad. Sci. USA 101, 10919–10924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gupta, G., Srivastava, A. & Setty, B. Androgen-estrogen synergy in the regulation of energy metabolism in epididymis and vas deferens of rhesus monkey. Endocr. Res. 17, 383 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Denolet, E. et al. The effect of a Sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol. Endocrinol. 20, 321–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Crown, A., Clifton, D. K. & Steiner, R. A. Neuropeptide signaling in the integration of metabolism and reproduction. Neuroendocrinology 86, 175–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Hill, J. W., Elmquist, J. K. & Elias, C. F. Hypothalamic pathways linking energy balance and reproduction. Am. J. Physiol. Endocrinol. Metab. 294, E827–E832 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Wade, G. N., Schneider, J. E. & Li, H. Y. Control of fertility by metabolic cues. Am. J. Physiol. 270, E1–E19 (1996).

    CAS  PubMed  Google Scholar 

  99. Trumble, B. C., Brindle, E., Kupsik, M. & O'Connor, K. A. Responsiveness of the reproductive axis to a single missed evening meal in young adult males. Am. J. Hum. Biol. 22, 775–781 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Saradha, B. & Mathur, P. Effect of environmental contaminants on male reproduction. Environ. Toxicol. Pharmacol. 21, 34–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Nindl, B. C. et al. LH secretion and testosterone concentrations are blunted after resistance exercise in men. J. App. Physiol. 91, 1251–1258 (2001).

    Article  CAS  Google Scholar 

  102. Chigrinskiy, E. & Conway, V. Protective effect of D-ribose against inhibition of rats testes function at excessive exercise. J. Stress Physiol. Biochem. 7, 242–249 (2011).

    Google Scholar 

  103. Petersen, C. & Soder, O. The Sertoli cell—a hormonal target and'super'nurse for germ cells that determines testicular size. Horm. Res. 66, 153–161 (2006).

    CAS  PubMed  Google Scholar 

  104. Gonzalez, C. et al. Role of 17beta-estradiol and/or progesterone on insulin sensitivity in the rat: implications during pregnancy. J. Endocrinol. 166, 283 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Carreau, S. & Hess, R. A. Oestrogens and spermatogenesis. Philos. Trans. R. Soc. B. Biol. Sci. 365, 1517–1535 (2010).

    Article  CAS  Google Scholar 

  106. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Meyer, M. R., Clegg, D. J., Prossnitz, E. R. & Barton, M. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol. 203, 259–269 (2011).

    Article  CAS  Google Scholar 

  108. Pitteloud, N. et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabet. Care 28, 1636 (2005).

    Article  CAS  Google Scholar 

  109. Alberti, K. G., Zimmet, P. & Shaw, J. Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 23, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Cohen, P. G. Obesity in men: the hypogonadal-estrogen receptor relationship and its effect on glucose homeostasis. Med. Hypotheses 70, 358–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Hofstra, J. et al. High prevalence of hypogonadotropic hypogonadism in men referred for obesity treatment. Neth. J. Med. 66, 103–109 (2008).

    CAS  PubMed  Google Scholar 

  112. Moriarty-Kelsey, M., Harwood, J. E. F., Travers, S. H., Zeitler, P. S. & Nadeau, K. J. Testosterone, obesity and insulin resistance in young males: Evidence for an association between gonadal dysfunction and insulin resistance during puberty. J. Pediatr. Endocrinol. Metab. 23, 1281–1287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Robeva, R., Tomova, A., Kirilov, G. & Kumanov, P. Anti-Mullerian hormone and inhibin B levels reflect altered Sertoli cell function in men with metabolic syndrome. Andrologia http://dx.doi.org/10.1111/j.1439-02722011.01185.x.

  114. Martini, A. C. et al. Overweight and seminal quality: a study of 794 patients. Fertil. Steril. 94, 1739–1743 (2010).

    Article  PubMed  Google Scholar 

  115. Silva, F. R., Leite, L. D., Barreto, K. P., D'Agostini, C. & Zamoner, A. Effect of 3,5,3'-triiodo-L-thyronine on amino acid accumulation and membrane potential in Sertoli cells of the rat testis. Life Sci. 69, 977–986 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Mounzih, K., Lu, R. & Chehab, F. F. Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology 138, 1190–1193 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Nogueiras, R. et al. Novel expression of resistin in rat testis: functional role and regulation by nutritional status and hormonal factors. J. Cell Sci. 117, 3247 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Rodriguez-Pacheco, F. et al. Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Caviglia, D., Scarabelli, L. & Palmero, S. Effects of carnitines on rat sertoli cell protein metabolism. Horm. Metab. Res. 36, 221–225 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Portuguese “Fundação para a Ciência e a Tecnologia”—FCT (PTDC/QUI-BIQ/121446/2010) co-funded by FEDER via Programa Operacional Factores de Competitividade—COMPETE/QREN. L. Rato (SFRH/BD/72733/2010), M. G. Alves (SFRH/BPD/80451/2011) and A. I. Duarte (SFRH/BPD/26872/2006) were financed by FCT. P. F. Oliveira was financed by FCT through FSE and POPH funds (Programa Ciência 2008).

Author information

Authors and Affiliations

Authors

Contributions

L. Rato and M. G. Alves researched data for the article. L. Rato, M. G. Alves and P. F. Oliviera contributed substantially to discussion of content, writing and reviewing/editing the manuscript before submission. S. Socorro, A. I. Duarte and J. E. Cavaco contributed substantially to discussion of content and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Pedro F. Oliveira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rato, L., Alves, M., Socorro, S. et al. Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9, 330–338 (2012). https://doi.org/10.1038/nrurol.2012.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing