Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Filtering transcriptional noise during development: concepts and mechanisms

Key Points

  • Transcriptional noise is a natural consequence of the molecular interactions that mediate gene expression.

  • Experimental evidence has recently begun to emerge on the molecular basis of transcriptional noise in prokaryotes and lower eukaryotes. This work has allowed a detailed analysis of this variable and its influence on the performance of simple gene-regulatory networks (GRNs).

  • The development and patterning of an organism relies on the coordination of the expression of many genes over many cells. Extrapolation of the findings that are derived from the analysis of noise in simple systems indicates the potential for chaotic behaviour in developmental GRNs.

  • The performance of GRNs is robust and reproducible; this indicates that dedicated mechanisms exist to control and reduce the noise that is associated with the performance of developmental GRNs.

  • Cell-fate assignations are a fundamental element of developmental systems and can be represented as a transition between cell states — from S1 to S2. At some point during this transition cells are in a noisy, undefined state (that is, they are in the S1/S2 state). The transition from S1 to S1/S2 reflects the induction of gene expression that is associated with S2, whereas the transition from S1/S2 to S2 represents the stabilization of the S2 gene-expression pattern.

  • Wnt signalling does not seem to be involved in the induction of patterns of gene expression during development but rather in their stabilization. As such, Wnt signalling acts as a noise filter.

  • We suggest that the filtering of transcriptional noise during development requires targeted chromatin remodelling and that Wnt signalling is dedicated to this function.

Abstract

The assignation of cell fates during eukaryotic development relies on the coordinated and stable expression of cohorts of genes within cell populations. The precise and reproducible nature of this process is remarkable given that, at the single-cell level, the transcription of individual genes is associated with noise — random molecular fluctuations that create variability in the levels of gene expression within a cell population. Here we consider the implications of transcriptional noise for development and suggest the existence of molecular devices that are dedicated to filtering noise. On the basis of existing evidence, we propose that one such mechanism might depend on the Wnt signalling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different modes of cell-fate assignation during development.
Figure 2: Examples of simple gene-regulatory networks and their information-processing capacity.
Figure 3: Bicoid activity in the early Drosophila melanogaster embryo.
Figure 4: A model for the analysis of cell-fate transitions.

Similar content being viewed by others

References

  1. Gilbert, S. Developmental Biology (Sinauer Associates, Sunderland, Massachusetts, 2000).

    Google Scholar 

  2. Wolpert, L. Principles of Development (Oxford Univ. Press, 2001).

    Google Scholar 

  3. Martinez Arias, A. & Stewart, A. Molecular Principles of Animal Development (Oxford Univ. Press, 2002).

    Google Scholar 

  4. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  6. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M. & Teichmann, S. A. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Neumann, C. & Cohen, S. Morphogens and pattern formation. Bioessays 19, 721–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002). The authors present a clear exposition of the concepts and molecular elements that are required to analyse the noise that is associated with gene expression.

    Article  CAS  PubMed  Google Scholar 

  10. Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004). This is a detailed and insightful analysis of noise during the activation of gene expression in Saccharomyces cerevisiae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002). This is the first quantitative demonstration and analysis of the existence of noise during gene expression in Escherichia coli.

    Article  CAS  PubMed  Google Scholar 

  14. Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. van Steensel, B. Mapping of genetic and epigenetic regulatory networks using microarrays. Nature Genet. 37, S18–S24 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Davidson, E. H. Genomic Regulatory Systems: Development and Evolution (Academic Press, San Diego, California, 2001).

    Google Scholar 

  18. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Isaacs, F. J., Blake, W. J. & Collins, J. J. Signal processing in single cells. Science 307, 1886–1888 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Yeger-Lotem, E. et al. Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc. Natl Acad. Sci. USA 101, 5934–5939 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002). This is an enlightening application of the network motif concept to the functional organization of transcription in E. coli.

    Article  CAS  PubMed  Google Scholar 

  27. Acar, M., Becskei, A. & van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic transitions. Nature 435, 228–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laurent, M. & Kellershohn, N. Multistability: a major means of differentiation and evolution in biological systems. Trends Biochem. Sci. 24, 418–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ptashne, M. A Genetic Switch: Phage λ and Higher Organisms (Blackwell Scientific, Oxford, 1992).

    Google Scholar 

  32. Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002). This is an experimental exploration of regulatory space. It was always thought that the elements of a biological network could be linked in many ways to obtain the same behaviour and that, paradoxically, very small changes in the structure of the network could alter its behaviour. This article contains proof of both statements.

    Article  CAS  PubMed  Google Scholar 

  33. Davidson, E. H., McClay, D. R. & Hood, L. Regulatory gene networks and the properties of the developmental process. Proc. Natl Acad. Sci. USA. 100, 1475–1480 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levine, M. & Davidson, E. H. Gene regulatory networks for development. Proc. Natl Acad. Sci. USA. 102, 4936–4942 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bolouri, H. & Davidson, E. H. Modeling transcriptional regulatory networks. Bioessays 24, 1118–1129 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Stathopoulos, A. & Levine, M. Whole-genome analysis of Drosophila gastrulation. Curr. Opin. Genet. Dev. 14, 477–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Furlong, E. E., Andersen, E. C., Null, B., White, K. P. & Scott, M. P. Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ephrussi, A. & St Johnston, D. Seeing is believing: the bicoid morphogen gradient matures. Cell 116, 143–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Driever, W. & Nusslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Driever, W. & Nusslein-Volhard, C. A gradient of bicoid protein in Drosophila embryos. Cell 54, 83–93 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Houchmandzadeh, B., Wieschaus, E. & Leibler, S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802 (2002). A departure from the analysis of average phenotypes that reveals the existence of noise-filtering systems in development and their implications for pattern formation.

    Article  CAS  PubMed  Google Scholar 

  42. Spirov, A. V. & Holloway, D. M. Making the body plan: precision in the genetic hierarchy of Drosophila embryo segmentation. In Silico Biol. 3, 89–100 (2003).

    CAS  PubMed  Google Scholar 

  43. Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. & Ismagilov, R. F. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–1138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martinez Arias, A. Wnts as morphogens? The view from the wing of Drosophila. Nature Rev. Mol. Cell Biol. 4, 321–325 (2003).

    Article  CAS  Google Scholar 

  45. Wheeler, J. C. et al. Distinct in vivo requirements for establishment versus maintenance of transcriptional repression. Nature Genet. 32, 206–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Schweisguth, F. Notch signaling activity. Curr. Biol. 14, R129–R138 (2004).

  47. Gurdon, J. B. A community effect in animal development. Nature 336, 772–774 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Gurdon, J. B., Tiller, E., Roberts, J. & Kato, K. A community effect in muscle development. Curr. Biol. 3, 1–11 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Standley, H. J., Zorn, A. M. & Gurdon, J. B. eFGF and its mode of action in the community effect during Xenopus myogenesis. Development 128, 1347–1357 (2001).

    CAS  PubMed  Google Scholar 

  50. Meir, E., von Dassow, G., Munro, E. & Odell, G. M. Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 12, 778–786 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Collier, J. R., Monk, N. A., Maini, P. K. & Lewis, J. H. Pattern formation by lateral inhibition with feedback: a mathematical model of Delta–Notch intercellular signalling. J. Theor. Biol. 183, 429–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Giles, R. H., van Es, J. H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta 1653, 1–24 (2003).

    CAS  PubMed  Google Scholar 

  55. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Kuhl, M., Sheldahl, L. C., Park, M., Miller, J. R. & Moon, R. T. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Martinez Arias, A. The informational content of gradients of Wnt proteins. Sci. STKE 2000, PE1 (2000).

  58. DasGupta, R., Kaykas, A., Moon, R. T. & Perrimon, N. Functional genomic analysis of the Wnt-Wingless signaling pathway. Science 308, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Walters, M. C. et al. Enhancers increase the probability but not the level of gene expression. Proc. Natl Acad. Sci. USA 92, 7125–7129 (1995). This is an experimental demonstration of the importance of considering the distribution, rather than the average, of gene expression within a population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fiering, S., Whitelaw, E. & Martin, D. I. To be or not to be active: the stochastic nature of enhancer action. Bioessays 22, 381–387 (2000).

    CAS  PubMed  Google Scholar 

  61. Barolo, S. & Posakony, J. W. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev. 16, 1167–1181 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Maves, L. & Schubiger, G. Transdetermination in Drosophila imaginal discs: a model for understanding pluripotency and selector gene maintenance. Curr. Opin. Genet. Dev. 13, 472–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Cox, V. T. & Baylies, M. K. Specification of individual Slouch muscle progenitors in Drosophila requires sequential Wingless signaling. Development 132, 713–724 (2005). The authors provide a careful analysis of the role of Wnt/β-catenin signalling in cell-fate specification in Drosophila melanogaster ; it reveals the role of this signalling pathway in lowering the threshold for the activity of other proteins.

    Article  CAS  PubMed  Google Scholar 

  65. Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Morel, V. & Martinez Arias, A. Armadillo/β-catenin-dependent Wnt signalling is required for the polarisation of epidermal cells during dorsal closure in Drosophila. Development 131, 3273–3283 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Habas, R., Dawid, I. B. & He, X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17, 295–309 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinez Arias, A., Zecchini, V. & Brennan, K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 12, 524–533 (2002).

    Article  PubMed  Google Scholar 

  69. Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Huppert, S. S., Ilagan, M. X., De Strooper, B. & Kopan, R. Analysis of Notch function in presomitic mesoderm suggests a γ-secretase-independent role for presenilins in somite differentiation. Dev. Cell 8, 677–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Hayward, P. et al. Notch modulates Wnt signalling by associating with Armadillo/β-catenin and regulating its transcriptional activity. Development 132, 1819–1830 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005). The simultaneous measurement of various cell-signalling events in single cells within populations reveals that the state of a cell is not simply determined by its pattern of gene or protein expression, but by the activity and state of its functional networks.

    Article  CAS  PubMed  Google Scholar 

  73. Irish, J. M. I. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. A. & O'Farrell, P. H. Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature 332, 604–609 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martinez Arias, A., Baker, N. E. & Ingham, P. W. Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103, 157–170 (1988).

    CAS  PubMed  Google Scholar 

  77. Bejsovec, A. & Martinez Arias, A. Roles of Wingless in patterning the larval epidermis of Drosophila. Development 113, 471–485 (1991).

    CAS  PubMed  Google Scholar 

  78. Garcia-Garcia, M. J., Ramain, P., Simpson, P. & Modolell, J. Different contributions of Pannier and Wingless to the patterning of the dorsal mesothorax of Drosophila. Development 126, 3523–3532 (1999).

    CAS  PubMed  Google Scholar 

  79. Galceran, J., Hsu, S. C. & Grosschedl, R. Rescue of a Wnt mutation by an activated form of LEF-1: regulation of maintenance but not initiation of Brachyury expression. Proc. Natl Acad. Sci. USA 98, 8668–8673 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Megason, S. G. & McMahon, A. P. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129, 2087–2098 (2002).

    CAS  PubMed  Google Scholar 

  81. Baylies, M. K., Martinez Arias, A. & Bate, M. wingless is required for the formation of a subset of muscle founder cells during Drosophila embryogenesis. Development 121, 3829–3837 (1995). This article shows that Wnt signalling has a permissive rather than an instructive function during mesodermal patterning in Drosophila melanogaster.

    CAS  PubMed  Google Scholar 

  82. Klein, T. & Martinez Arias, A. The vestigial gene product provides a molecular context for the interpretation of signals during the development of the wing in Drosophila. Development 126, 913–925 (1999).

    CAS  PubMed  Google Scholar 

  83. Whangbo, J. & Kenyon, C. A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol. Cell 4, 851–858 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Wan, S., Cato, A. M. & Skaer, H. Multiple signalling pathways establish cell fate and cell number in Drosophila malpighian tubules. Dev. Biol. 217, 153–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Brennan, K., Baylies, M. & Martinez Arias, A. Repression by Notch is required before Wingless signalling during muscle progenitor cell development in Drosophila. Curr. Biol. 9, 707–710 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Lowry, W. E. et al. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 19, 1596–1611 (2005). This is a thorough analysis of Wnt signalling in a vertebrate developmental system that reveals the threshold-setting properties of this signalling pathway in determining stem-cell behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Zechner, D. et al. β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Collins, R. T. & Treisman, J. E. Osa-containing Brahma chromatin remodeling complexes are required for the repression of Wingless target genes. Genes Dev. 14, 3140–3152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11, 774–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Akashi, K. et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101, 383–389 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank U.-M. Fiuza, M. Gonzalez-Gaitan, M. Isalan, J. Gurdon, T. Kouzarides, V. Morel, P. Sanders and L. Serrano for comments on the manuscript. Special thanks to H. Bolouri and A. Friday for tutorials and discussions on subjects of which we would otherwise have been unaware. The research of the authors is supported by The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfonso Martinez Arias or Penelope Hayward.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Alfonso Martinez Arias's homepage

Glossary

Cell state

The molecular phenotype of a cell. At the transcriptional level, it is defined by the profile of gene expression that defines its phenotype. It can refer to a terminally differentiated cell or to one that is at a certain stage of development.

Non-Markovian sequence

A sequence of events in which a given step depends exclusively on the position of the system and not on its history. One example is the fate of adult stem cells, which can be coaxed to differentiate into any cell type independently of their history.

Morphogen

A signalling molecule that elicits sensitive concentration-dependent responses in gene expression.

Gene-regulatory networks

Functionally significant arrangements of regulatory interactions between individual genes that carry out specific information-processing tasks.

Fidelity

The reliability with which a process is executed; the degree of reliability between the input and output of a pathway or network.

Transfer function

A parameter that measures the relationship between the input and output in a network.

Endomesoderm

The group of cells that give rise to the endoderm and mesoderm.

Network motifs

Stereotyped patterns of interactions between the basic regulatory elements of a network in bacteria and yeast. They are defined as the functional interactions between the elements of a network that occur in real networks more than other possible interactions.

Bistability

The observation that for a certain range of parameters the system can exist in either of two (or many — multistability) stable states.

Induction

The definition of a particular and molecularly defined state through an input.

Syncitium

A multinucleate cell in which the nuclei are not separated by cell membranes.

Lateral inhibition

A developmental strategy that curtails the development of a particular fate in cells that surround a cell that has already adopted this fate.

Community effect

A developmental strategy that results in the development of homogeneous and stable expression levels of a particular gene or genes across a population that initially had low and variable expression levels of those genes.

Competence domain

A group of cells that share the potential to adopt a particular fate.

Transdetermination

The property of cells to spontaneously change their commitment from one particular developmental trajectory to another.

Imaginal disc

A specialized groups of cells in Diptera that give rise to adult structures such as wings or eyes. They are set aside during embryogenesis, proliferate inside the larva and then produce the adult structures during pupation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias, A., Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nat Rev Genet 7, 34–44 (2006). https://doi.org/10.1038/nrg1750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing