Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres

Abstract

Optical tweezers are exquisite position and force transducers and are widely used for high-resolution measurements in fields as varied as physics, biology and materials science1,2,3. Typically, small dielectric particles are trapped in a tightly focused laser and are often used as handles for sensitive force measurements. Improvement to the technique has largely focused on improving the instrument and shaping the light beam1,4, and there has been little work exploring the benefit of customizing the trapped object5. Here, we describe how anti-reflection coated, high-refractive-index core–shell particles composed of titania enable single-beam optical trapping with an optical force greater than a nanonewton. The increased force range broadens the scope of feasible optical trapping experiments and will pave the way towards more efficient light-powered miniature machines, tools and applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculations.
Figure 2: Measurement of trap stiffness.
Figure 3: Escape force measurements in oil.

Similar content being viewed by others

References

  1. Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

    Article  ADS  Google Scholar 

  2. Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nature Photon. 5, 318–321 (2011).

    Article  ADS  Google Scholar 

  3. Grier, D. G. Optical tweezers in colloid and interface science. Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).

    Article  Google Scholar 

  4. Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nature Photon. 5, 335–342 (2011).

    Article  ADS  Google Scholar 

  5. Glückstad, J. Optical manipulation: sculpting the object. Nature Photon. 5, 7–8 (2011).

    Article  ADS  Google Scholar 

  6. Smith, S. B., Cui, Y. J. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  ADS  Google Scholar 

  7. Maier, B., Potter, L., So, M., Seifert, H. S. & Sheetz, M. P. Single pilus motor forces exceed 100 pN. Proc. Natl Acad. Sci. USA 99, 16012–16017 (2002).

    Article  ADS  Google Scholar 

  8. Dong, J., Castro, C. E., Boyce, M. C., Lang, M. J. & Lindquist, S. Optical trapping with high forces reveals unexpected behaviors of prion fibrils. Nature Struct. Mol. Biol. 17, 1422–1430 (2010).

    Article  Google Scholar 

  9. Peterman, E., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    Article  ADS  Google Scholar 

  10. Simpson, N. B., McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943–1949 (1998).

    Article  ADS  Google Scholar 

  11. Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    Article  ADS  Google Scholar 

  12. Reihani, S. N. & Oddershede, L. B. Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. Opt. Lett. 32, 1998–2000 (2007).

    Article  ADS  Google Scholar 

  13. Mahamdeh, M., Campos, C. P. & Schäffer, E. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers. Opt. Express 19, 11759–11768 (2011).

    Article  ADS  Google Scholar 

  14. Bormuth, V. et al. Optical trapping of coated microspheres. Opt. Express 16, 13831–13844 (2008).

    Article  ADS  Google Scholar 

  15. Hu, Y., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Antireflection coating for improved optical trapping. J. Appl. Phys. 103, 093119 (2008).

    Article  ADS  Google Scholar 

  16. van der Horst, A., van Oostrum, P. D. J., Moroz, A., van Blaaderen, A. & Dogterom, M. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers. Appl. Opt. 47, 3196–3202 (2008).

    Article  ADS  Google Scholar 

  17. Demirörs, A. F. et al. Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence. Langmuir 27, 1626–1634 (2011).

    Article  Google Scholar 

  18. Walheim, S., Schäffer, E., Mlynek, J. & Steiner, U. Nanophase-separated polymer films as high-performance antireflection coatings. Science 283, 520–522 (1999).

    Article  ADS  Google Scholar 

  19. Jannasch, A., Mahamdeh, M. & Schäffer, E. Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. Phys. Rev. Lett. 107, 228301 (2011).

    Article  ADS  Google Scholar 

  20. Tolić-Nørrelykke, S. F. et al. Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77, 103101 (2006).

    Article  ADS  Google Scholar 

  21. Schäffer, E., Nørrelykke, S. & Howard, J. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir 23, 3654–3665 (2007).

    Article  Google Scholar 

  22. Jahnel, M., Behrndt, M., Jannasch, A., Schäffer, E. & Grill, S. W. Measuring the complete force field of an optical trap. Opt. Lett. 36, 1260–1262 (2011).

    Article  ADS  Google Scholar 

  23. Moffitt, J. et al. Intersubunit coordination in a homomeric ring ATPase. Nature 457, 446–450 (2009).

    Article  ADS  Google Scholar 

  24. Geiseler, B. & Fruk, L. Bifunctional catechol based linkers for modification of TiO2 surfaces. J. Mater. Chem. 22, 735–741 (2012).

    Article  Google Scholar 

  25. Franosch, T. et al. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011).

    Article  ADS  Google Scholar 

  26. Lee, S.-H. et al. Characterizing and tracking single colloidal particles with video holographic microscopy. Opt. Express 15, 18275–18282 (2007).

    Article  ADS  Google Scholar 

  27. Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. Appl. Phys. Lett. 78, 249–251 (2001).

    Article  ADS  Google Scholar 

  28. Palima, D. et al. Wave-guided optical waveguides. Opt. Express 20, 2004–2014 (2012).

    Article  ADS  Google Scholar 

  29. Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A 9, S196–S203 (2007).

    Article  ADS  Google Scholar 

  30. Mahamdeh, M. & Schäffer, E. Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. Opt. Express 17, 17190–17199 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Bormuth for comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (Emmy Noether Program), the European Research Council (ERC starting grant 2010), EU project Nanodirect (CP-FP-213948-2) and Technische Universität Dresden.

Author information

Authors and Affiliations

Authors

Contributions

E.S. designed research. A.J. performed measurements. A.J. and A.F.D. synthesized the particles. A.v.B. advised on the synthesis. A.J. and P.D.J.v.O. performed theoretical calculations. A.J. and E.S. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Erik Schäffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jannasch, A., Demirörs, A., van Oostrum, P. et al. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photon 6, 469–473 (2012). https://doi.org/10.1038/nphoton.2012.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing