Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer

Abstract

Microscopic studies of superconductors and their vortices play a pivotal role in understanding the mechanisms underlying superconductivity1,2,3,4,5. Local measurements of penetration depths6 or magnetic stray fields7 enable access to fundamental aspects such as nanoscale variations in superfluid densities6 or the order parameter symmetry of superconductors8. However, experimental tools that offer quantitative, nanoscale magnetometry and operate over large ranges of temperature and magnetic fields are still lacking. Here, we demonstrate the first operation of a cryogenic scanning quantum sensor in the form of a single nitrogen–vacancy electronic spin in diamond9,10,11, which is capable of overcoming these existing limitations. To demonstrate the power of our approach, we perform quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBa2Cu3O7–δ. With a sensor-to-sample distance of 10 nm, we observe striking deviations from the prevalent monopole approximation12 in our vortex stray-field images, and find excellent quantitative agreement with Pearl's analytic model13. Our experiments provide a non-invasive and unambiguous determination of the system's local penetration depth and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning nitrogen–vacancy magnetometry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basis of NV magnetometry and overview of experimental apparatus.
Figure 2: Ensemble vortex imaging and sample design.
Figure 3: Quantitative mapping of single-vortex stray magnetic fields.
Figure 4: Quantitative stray-field analysis and determination of London penetration depth.

Similar content being viewed by others

References

  1. Essmann, U. & Träuble, H. The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24, 526–527 (1967).

    Article  CAS  Google Scholar 

  2. Bending, S. J. Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999).

    Article  CAS  Google Scholar 

  3. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214 (1989).

    Article  CAS  Google Scholar 

  4. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466 (2002).

    Article  CAS  Google Scholar 

  5. Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353 (2007).

    Article  CAS  Google Scholar 

  6. Luan, L. et al. Local measurement of the penetration depth in the pnictide superconductor Ba(Fe0.95Co0.05)2As2 . Phys. Rev. B 81, 100501 (2010).

    Article  Google Scholar 

  7. Kirtley, J. R. et al. Scanning squid susceptometry of a paramagnetic superconductor. Phys. Rev. B 85, 224518 (2012).

    Article  Google Scholar 

  8. Hardy, W. N., Bonn, D. A., Morgan, D. C., Liang, R. & Zhang, K. Precision measurements of the temperature dependence of λ in YBa2Cu3O6.95: strong evidence for nodes in the gap function. Phys. Rev. Lett. 70, 3999 (1993).

    Article  CAS  Google Scholar 

  9. Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).

    Article  Google Scholar 

  10. Tetienne, J. P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nature Commun. 6, 6733 (2014).

    Article  Google Scholar 

  11. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    Article  CAS  Google Scholar 

  12. Auslaender, O. M. et al. Mechanics of individual isolated vortices in a cuprate superconductor. Nature Phys. 5, 35–39 (2008).

    Article  Google Scholar 

  13. Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65 (1964).

    Article  Google Scholar 

  14. Tafuri, F., Kirtley, J. R., Medaglia, P. G., Orgiani, P. & Balestrino, G. Magnetic imaging of pearl vortices in artificially layered (Ba0.9Nd0.1CuO2+x)m/(CaCuO2)n systems. Phys. Rev. Lett. 92, 157006 (2004).

    Article  CAS  Google Scholar 

  15. Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nature Nanotech. 8, 639–644 (2013).

    Article  CAS  Google Scholar 

  16. Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  17. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  18. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  CAS  Google Scholar 

  19. Bouchard, L. S., Acosta, V. M., Bauch, E. & Budker, D. Detection of the Meissner effect with a diamond magnetometer. New J. Phys. 13, 025017 (2011).

    Article  Google Scholar 

  20. Schaefer-Nolte, E., Reinhard, F., Ternes, M., Wrachtrup, J. & Kern, K. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum. Rev. Sci. Instrum. 85, 013701 (2014).

    Article  CAS  Google Scholar 

  21. Appel, P., Ganzhorn, M., Neu, E. & Maletinsky, P. Nanoscale microwave imaging with a single electron spin in diamond. New J. Phys. 17, 112001 (2015).

    Article  Google Scholar 

  22. Carneiro, G. & Brandt, E. H. Vortex lines in films: fields and interactions. Phys. Rev. B 61, 6370 (2000).

    Article  CAS  Google Scholar 

  23. Wölbing, R. et al. Optimizing the spin sensitivity of grain boundary junction nanosquids—towards detection of small spin systems with single-spin resolution. Supercond. Sci. Technol. 27, 125007 (2014).

    Article  Google Scholar 

  24. Young, A. F. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nature Phys. 8, 550–556 (2012).

    Article  CAS  Google Scholar 

  25. Xia, J., Maeno, Y., Beyersdorf, P., Fejer, M. & Kapitulnik, A. High resolution polar Kerr effect measurements of Sr2RuO4: evidence for broken time-reversal symmetry in the superconducting state. Phys. Rev. Lett. 97, 167002 (2006).

    Article  Google Scholar 

  26. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  CAS  Google Scholar 

  27. Yale, C. G. et al. All-optical control of a solid-state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

    Article  CAS  Google Scholar 

  28. Dréau, A. et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011).

    Article  Google Scholar 

  29. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  CAS  Google Scholar 

  30. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  CAS  Google Scholar 

  31. Kresin, V. Z., Ovchinnikov, Y. N. & Wolf, S. A. Inhomogeneous superconductivity and the ‘pseudogap’ state of novel superconductors. Phys. Rep. 431, 231–259 (2006).

    Article  CAS  Google Scholar 

  32. Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).

    Article  CAS  Google Scholar 

  33. De Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    Article  CAS  Google Scholar 

  34. Embon, L. et al. Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Sci. Rep. 5, 7598 (2015).

    Article  CAS  Google Scholar 

  35. Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nature Phys. http://dx.doi.org/10.1038/nphys3667 (2016).

  36. Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Preprint at http://arXiv.org/abs/1510.02780 (2015).

  37. Werner, R. et al. YBa2Cu3O7/La0.7Ca0.3MnO3 bilayers: interface coupling and electric transport properties. Phys. Rev. B 82, 224509 (2010).

    Article  Google Scholar 

  38. Scharinger, S. et al. Magnetic field dependence of the critical current in YBa2Cu3O7–δ/Au/Nb ramp-zigzag Josephson junctions. Phys. Rev. B 86, 144531 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Jacques, A. Högele and S.D. Huber for discussions and feedback on the manuscript. The authors acknowledge Attocube Systems for support and the joint development of the microscope system used here. The authors also acknowledge financial support from SNI (NCCR QSIT), SNF grants 143697 and 155845, and EU FP7 grant 611143 (DIADEMS).

Author information

Authors and Affiliations

Authors

Contributions

L.T., D.R. and M.G. carried out the experiment and analysed the data. E.N., P.A. and M.G. fabricated scanning probe tips. B.M., R.K. and D.K. grew the YBCO samples and provided valuable input for the experiment. All authors commented on the manuscript. P.M. wrote the manuscript, conceived the experiment and supervised the project.

Corresponding author

Correspondence to P. Maletinsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiel, L., Rohner, D., Ganzhorn, M. et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotech 11, 677–681 (2016). https://doi.org/10.1038/nnano.2016.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing