Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids

This article has been updated

Abstract

The prevalence of obesity has markedly increased over the past few decades. Exploration of how hunger and satiety signals influence the reward system can help us understand non-homeostatic feeding. Insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce long-term depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high-fat meal, which elevates endogenous insulin, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior in mice and conditioned place preference for food in rats. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces anticipatory activity and preference for food-related cues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insulin depresses AMPAR-mediated synaptic transmission onto VTA dopamine neurons.
Figure 2: Insulin-induced LTD requires Akt and mTOR signaling.
Figure 3: Insulin-induced LTD in the VTA does not require endocytosis of AMPARs.
Figure 4: Insulin-induced LTD occurs presynaptically and requires CB1R activation.
Figure 5: Insulin-induced LTD is mediated by endocannabinoid retrograde signaling.
Figure 6: A SHF meal increases endocannabinoid tone and occludes insulin-induced LTD onto VTA dopamine neurons.
Figure 7: Insulin in the VTA decreases food anticipatory activity and conditioned place preference, but not effort.

Similar content being viewed by others

Change history

  • 04 February 2013

    In the version of this article initially published online, the y axis of Figure 1f was labeled AMPA EPSCs; the graph actually shows GABAA IPSCs. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Gerozissis, K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur. J. Pharmacol. 585, 38–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Palmiter, R.D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 30, 375–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Bonci, A. & Malenka, R.C. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci. 19, 3723–3730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Overton, P.G., Richards, C.D., Berry, M.S. & Clark, D. Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport 10, 221–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Borgland, S.L. et al. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci. 29, 11215–11225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borgland, S.L., Taha, S.A., Sarti, F., Fields, H.L. & Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49, 589–601 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116, 3229–3239 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson, J.L. & Borgland, S.L. A role for hypocretin/orexin in motivation. Behav. Brain Res. 217, 446–453 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Baskin, D.G. et al. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res. 848, 114–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Woods, S.C., Seeley, R.J., Baskin, D.G. & Schwartz, M.W. Insulin and the blood-brain barrier. Curr. Pharm. Des. 9, 795–800 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hommel, J.D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Fulton, S. et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Figlewicz, D.P., Evans, S.B., Murphy, J., Hoen, M. & Baskin, D.G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 964, 107–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Figlewicz, D.P., Bennett, J.L., Naleid, A.M., Davis, C. & Grimm, J.W. Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol. Behav. 89, 611–616 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Figlewicz, D.P. et al. Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav. Neurosci. 118, 479–487 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Sipols, A.J., Bayer, J., Bennett, R. & Figlewicz, D.P. Intraventricular insulin decreases kappa opioid-mediated sucrose intake in rats. Peptides 23, 2181–2187 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Figlewicz, D.P., Bennett, J.L., Aliakbari, S., Zavosh, A. & Sipols, A.J. Insulin acts at different CNS sites to decrease acute sucrose intake and sucrose self-administration in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R388–R394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mebel, D.M., Wong, J.C., Dong, Y.J. & Borgland, S.L. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur. J. Neurosci. 36, 2336–2346 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bruijnzeel, A.W., Corrie, L.W., Rogers, J.A. & Yamada, H. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats. Behav. Brain Res. 219, 254–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Overton, P.G. & Clark, D. Burst firing in midbrain dopamine neurons. Brain Res. Brain Res. Rev. 25, 312–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Y.T. & Linden, D.J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Man, H.Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Baltensperger, K. et al. Catalysis of serine and tyrosine autophosphorylation by the human insulin receptor. Proc. Natl. Acad. Sci. USA 89, 7885–7889 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schäffer, L. et al. A novel high-affinity peptide antagonist to the insulin receptor. Biochem. Biophys. Res. Commun. 376, 380–383 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Vigneri, R., Squatrito, S. & Sciacca, L. Insulin and its analogs: actions via insulin and IGF receptors. Acta Diabetol. 47, 271–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Asnaghi, L., Bruno, P., Priulla, M. & Nicolin, A. mTOR: a protein kinase switching between life and death. Pharmacol. Res. 50, 545–549 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Mameli, M., Balland, B., Lujan, R. & Lüscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S.H., Liu, L., Wang, Y.T. & Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661–674 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  PubMed  Google Scholar 

  32. Kauer, J.A. & Malenka, R.C. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 8, 844–858 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Katz, B. Quantal mechanism of neural transmitter release. Science 173, 123–126 (1971).

    Article  CAS  PubMed  Google Scholar 

  34. Melis, M. et al. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J. Neurosci. 24, 53–62 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heifets, B.D. & Castillo, P.E. Endocannabinoid signaling and long-term synaptic plasticity. Annu. Rev. Physiol. 71, 283–306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bisogno, T. et al. Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem. Biophys. Res. Commun. 256, 377–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Blum, I.D., Waddington-Lamont, E., Rodrigues, T. & Abizaid, A. Isolating neural correlates of the pacemaker for food anticipation. PLoS ONE 7, e36117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahn, S. & Phillips, A.G. Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. J. Neurosci. 19, RC29 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanchis-Segura, C. & Spanagel, R. Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict. Biol. 11, 2–38 (2006).

    Article  PubMed  Google Scholar 

  40. Pan, B., Hillard, C.J. & Liu, Q.S. Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J. Neurosci. 28, 1385–1397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henny, P. et al. Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat. Neurosci. 15, 613–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grueter, B.A., Brasnjo, G. & Malenka, R.C. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat. Neurosci. 13, 1519–1525 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerdeman, G.L., Ronesi, J. & Lovinger, D.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 5, 446–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Ronesi, J., Gerdeman, G.L. & Lovinger, D.M. Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J. Neurosci. 24, 1673–1679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yin, H.H., Davis, M.I., Ronesi, J.A. & Lovinger, D.M. The role of protein synthesis in striatal long-term depression. J. Neurosci. 26, 11811–11820 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Massa, F. et al. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice. J. Neurosci. 30, 6273–6281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lüscher, C. & Malenka, R.C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duckworth, W.C., Bennett, R.G. & Hammel, F.G. Insulin degradation: progress and potential. Endocr. Rev. 19, 608–624 (1998).

    CAS  PubMed  Google Scholar 

  49. Tsai, H.C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stuber, G.D. et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321, 1690–1692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshizaki, T. et al. Isolation and transplantation of dopaminergic neurons generated from mouse embryonic stem cells. Neurosci. Lett. 363, 33–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Johnson, S.W. & North, R.A. Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J. Physiol. (Lond.) 450, 455–468 (1992).

    Article  CAS  Google Scholar 

  53. Lacey, M.G., Mercuri, N.B. & North, R.A. Actions of cocaine on rat dopaminergic neurones in vitro. Br. J. Pharmacol. 99, 731–735 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Richardson, N.R. & Roberts, D.C. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J. Neurosci. Methods 66, 1–11 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Schoffelmeer, A.N. et al. Insulin modulates cocaine-sensitive monoamine transporter function and impulsive behavior. J. Neurosci. 31, 1284–1291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paxinos, G. & Watson, C. The Rat Brain in Sterotaxic Coordinates (Academic, New York, 1997).

  57. Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Lee for performing the insulin measurements and K. Haas, B. MacVicar and Y.T. Wang for suggestions on the manuscript. This research was supported by a Canadian Institute of Health Research operating grant (102617) and a Canadian Institute of Health Research new investigator award to S.L.B. G.L. was supported by a Swiss National Science Foundation postdoctoral fellowship. Behavioral experiments done in B.B.'s laboratory were supported by the Swiss National Science Foundation (31003A-133056).

Author information

Authors and Affiliations

Authors

Contributions

G.L. and S.L. under supervision of S.L.B. conducted the electrophysiological experiments and wrote the first draft of the manuscript; C.D. and H.Z. under supervision of A.G.P. performed the CPP experiments. G.L. under supervision of B.B. performed the progressive ratio experiments. J.C.Y.W. under supervision of S.L.B. performed the anticipatory behavior experiments. S.K. under supervision of S.M.C. performed the insulin measurements. S.L.B. wrote the manuscript and supervised the experiments.

Corresponding author

Correspondence to Stephanie L Borgland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 2666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labouèbe, G., Liu, S., Dias, C. et al. Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat Neurosci 16, 300–308 (2013). https://doi.org/10.1038/nn.3321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing