Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Precisely and accurately localizing single emitters in fluorescence microscopy

Abstract

Methods based on single-molecule localization and photophysics have brought nanoscale imaging with visible light into reach. This has enabled single-particle tracking applications for studying the dynamics of molecules and nanoparticles and contributed to the recent revolution in super-resolution localization microscopy techniques. Crucial to the optimization of such methods are the precision and accuracy with which single fluorophores and nanoparticles can be localized. We present a lucid synthesis of the developments on this localization precision and accuracy and their practical implications in order to guide the increasing number of researchers using single-particle tracking and super-resolution localization microscopy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization precision and accuracy.
Figure 2: Theories describing the localization precision or accuracy in SPT and localization microscopy.
Figure 3: Simulated images of an isotropic emitter at different axial positions Zp and cross-sections through the emitter position along the x direction.
Figure 4: Simplified illustrations of the detection beam path in several microscope setups that allow for 3D localization of single emitters.
Figure 5: Influence of dipole photon emission on localization precision and accuracy.
Figure 6: Influence of translational movement during camera exposure on localization precision and accuracy.
Figure 7: Experimental images illustrating the effect of sample background on the localization precision.
Figure 8: Simplified illustrations of the illumination path in several microscope setups that allow for sample background reduction.
Figure 9: Influence of localization precision, label density and label displacement on the resolution in a localization microscopy image.
Figure 10: Experimental images illustrating the influence of localization precision and label density on the resolution in localization microscopy.
Figure 11: Influence of localization precision on the analysis of single-particle trajectories in the case of Brownian motion.

Similar content being viewed by others

References

  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. 9, 413–418 (1873).

    Google Scholar 

  2. Rayleigh, L. On the theory of optical images, with special reference to the microscope. Philos. Mag. 42, 167–195 (1896).

    Article  Google Scholar 

  3. McCutchen, C.W. Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57, 1190–1192 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. Toraldo di Francia, G. Resolving power and information. J. Opt. Soc. Am. 45, 497–499 (1955).

    Article  Google Scholar 

  5. Crocker, J.C. & Grier, D.G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

  6. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).This is one of the three studies that introduced super-resolution localization microscopy based on localizing single fluorophores. This strongly increased the interest in understanding and optimizing localization precision and accuracy.

    Article  CAS  PubMed  Google Scholar 

  7. Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rust, M.J., Bates, M. & Zhuang, X.W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hell, S.W. Microscopy and its focal switch. Nat. Methods 6, 24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Gould, T.J., Verkhusha, V.V. & Hess, S.T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat. Protoc. 4, 291–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levi, V. & Gratton, E. Exploring dynamics in living cells by tracking single particles. Cell Biochem. Biophys. 48, 1–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Wieser, S. & Schütz, G.J. Tracking single molecules in the live cell plasma membrane—do's and don't's. Methods 46, 131–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Cheezum, M.K., Walker, W.F. & Guilford, W.H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ober, R.J., Ram, S. & Ward, E.S. Localization accuracy in single-molecule microscopy. Biophys. J. 86, 1185–1200 (2004).This study reports on the maximum achievable localization precision, assuming isotropic photon emission and a CCD detector, using the concept of the Cramér-Rao lower bound.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartko, A.P. & Dickson, R.M. Imaging three-dimensional single molecule orientations. J. Phys. Chem. B 103, 11237–11241 (1999).

    Article  CAS  Google Scholar 

  17. Enderlein, J., Toprak, E. & Selvin, P.R. Polarization effect on position accuracy of fluorophore localization. Opt. Express 14, 8111–8120 (2006).This study shows that the popular fitting of a 2D Gaussian function can introduce a localization inaccuracy up to tens of nanometers for fluorophores with a fixed dipole orientation.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, B., Zerubia, J. & Olivo-Marin, J.C. Gaussian approximations of fluorescence microscope point-spread function models. Appl. Opt. 46, 1819–1829 (2007).

    Article  PubMed  Google Scholar 

  19. Bobroff, N. Position measurement with a resolution and noise-limited instrument. Rev. Sci. Instrum. 57, 1152–1157 (1986).

    Article  Google Scholar 

  20. Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).This study introduced a simple formula that describes the localization precision of the popular fitting of a 2D Gaussian function, assuming isotropic photon emission and a CCD detector. The formula was later adjusted by others.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mortensen, K.I., Churchman, L.S., Spudich, J.A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010).This extensive study describes the localization precision of different position estimators, assuming either isotropic or dipole photon emission and either a CCD or EMCCD detector. The maximum-likelihood procedure is shown to approach the maximum achievable localization precision.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jia, H., Yang, J.K. & Li, X.J. Minimum variance unbiased subpixel centroid estimation of point image limited by photon shot noise. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 27, 2038–2045 (2010).

    Article  PubMed  Google Scholar 

  23. Li, H., Song, H., Rao, C. & Rao, X. Accuracy analysis of centroid calculated by a modified center detection algorithm for Shack-Hartmann wavefront sensor. Opt. Commun. 281, 750–755 (2008).

    Article  CAS  Google Scholar 

  24. Abraham, A.V., Ram, S., Chao, J., Ward, E.S. & Ober, R.J. Quantitative study of single molecule location estimation techniques. Opt. Express 17, 23352–23373 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Berglund, A.J., McMahon, M.D., McClelland, J.J. & Liddle, J.A. Fast, bias-free algorithm for tracking single particles with variable size and shape. Opt. Express 16, 14064–14075 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Small, A. & Stahlheber, S. Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods 11, 267–279 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. van Oijen, A.M., Köhler, J., Schmidt, J., Müller, M. & Brakenhoff, G.J. 3-Dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292, 183–187 (1998).

    Article  CAS  Google Scholar 

  28. DeSantis, M.C., Zareh, S.K., Li, X.L., Blankenship, R.E. & Wang, Y.M. Single-image axial localization precision analysis for individual fluorophores. Opt. Express 20, 3057–3065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frisken Gibson, S. & Lanni, F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light-microscopy. J. Opt. Soc. Am. A 8, 1601–1613 (1991).

    Article  Google Scholar 

  30. Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Sci. 253, 358–379 (1959).

    Article  Google Scholar 

  31. Török, P., Varga, P., Laczik, Z. & Booker, G.R. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indexes: an integral representation. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 325–332 (1995).

    Article  Google Scholar 

  32. Speidel, M., Jonás, A. & Florin, E.L. Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt. Lett. 28, 69–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Aguet, F., Van De Ville, D. & Unser, M. A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles. Opt. Express 13, 10503–10522 (2005).

    Article  PubMed  Google Scholar 

  34. Juette, M.F. et al. Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Prabhat, P., Ram, S., Ward, E.S. & Ober, R.J. Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions. IEEE Trans. Nanobioscience i 3, 237–242 (2004).

    Article  Google Scholar 

  36. Toprak, E., Balci, H., Blehm, B.H. & Selvin, P.R. Three-dimensional particle tracking via bifocal imaging. Nano Lett. 7, 2043–2045 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Mlodzianoski, M.J., Juette, M.F., Beane, G.L. & Bewersdorf, J. Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt. Express 17, 8264–8277 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. von Middendorff, C., Egner, A., Geisler, C., Hell, S. & Schönle, A. Isotropic 3D nanoscopy based on single emitter switching. Opt. Express 16, 20774–20788 (2008).

    Article  PubMed  Google Scholar 

  39. McMahon, M.D., Berglund, A.J., Carmichael, P., McClelland, J.J. & Liddle, J.A. 3D particle trajectories observed by orthogonal tracking microscopy. ACS Nano 3, 609–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Tang, J., Akerboom, J., Vaziri, A., Looger, L.L. & Shank, C.V. Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc. Natl. Acad. Sci. USA 107, 10068–10073 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aquino, D. et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat. Methods 8, 353–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang, B., Wang, W.Q., Bates, M. & Zhuang, X.W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).This study is one of the first to use an engineered PSF in the context of localization microscopy to improve the axial localization precision. The authors used astigmatism to encode the axial position of the emitter in the PSF shape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kao, H.P. & Verkman, A.S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67, 1291–1300 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Badieirostami, M., Lew, M.D., Thompson, M.A. & Moerner, W.E. Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. Appl. Phys. Lett. 97, 161103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baddeley, D., Cannell, M. & Soeller, C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res. 4, 589–598 (2011).

    Article  CAS  Google Scholar 

  47. Yajima, J., Mizutani, K. & Nishizaka, T. A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking. Nat. Struct. Mol. Biol. 15, 1119–1121 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Sun, Y., McKenna, J.D., Murray, J.M., Ostap, E.M. & Goldman, Y.E. Parallax: high accuracy three-dimensional single molecule tracking using split images. Nano Lett. 9, 2676–2682 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lew, M.D., Lee, S.F., Badieirostami, M. & Moerner, W.E. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Opt. Lett. 36, 202–204 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pavani, S.R.P. & Piestun, R. Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. Opt. Express 16, 22048–22057 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Thompson, M.A., Lew, M.D., Badieirostami, M. & Moerner, W.E. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Lett. 10, 211–218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grover, G., Pavani, R.P. & Piestun, R. Performance limits on three-dimensional particle localization in photon-limited microscopy. Opt. Lett. 35, 3306–3308 (2010).

    Article  PubMed  Google Scholar 

  53. Pavani, S.R.P., Greengard, A. & Piestun, R. Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system. Appl. Phys. Lett. 95, 021103 (2009).

    Article  CAS  Google Scholar 

  54. Engelhardt, J. et al. Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. Nano Lett. 11, 209–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Stallinga, S. & Rieger, B. Accuracy of the Gaussian point spread function model in 2D localization microscopy. Opt. Express 18, 24461–24476 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Aguet, F., Geissbühler, S., Märki, I., Lasser, T. & Unser, M. Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters. Opt. Express 17, 6829–6848 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Gould, T.J. et al. Nanoscale imaging of molecular positions and anisotropies. Nat. Methods 5, 1027–1030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stallinga, S. & Rieger, B. Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model. Opt. Express 20, 5896–5921 (2012).

    Article  PubMed  Google Scholar 

  59. Backlund, M.P. et al. Simultaneous, accurate measurement of the 3D position and orientation of single molecules. Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lew, M.D., Backlund, M.P. & Moerner, W.E. Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy. Nano Lett. 13, 3967–3972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lakowicz, J.R. Principles of Fluorescence Spectroscopy 3rd edn. (Springer, 2006).

  62. Ram, S., Ward, E.S. & Ober, R.J. A stochastic analysis of performance limits for optical microscopes. Multidimens. Syst. Signal Process. 17, 27–57 (2006).

    Article  Google Scholar 

  63. Wong, Y., Lin, Z. & Ober, R.J. Limit of the accuracy of parameter estimation for moving single molecules imaged by fluorescence microscopy. IEEE Trams. Signal Process. 59, 895–911 (2011).

    Article  Google Scholar 

  64. Deschout, H., Neyts, K. & Braeckmans, K. The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy. J. Biophotonics 5, 97–109 (2012).

    CAS  PubMed  Google Scholar 

  65. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Hynecek, J. & Nishiwaki, T. Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs. IEEE Trans. Electron Devices 50, 239–245 (2003).

    Article  Google Scholar 

  68. Chao, J., Ward, E.S. & Ober, R.J. Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices. Multidimens. Syst. Signal Process. 23, 349–379 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Huang, Z.L. et al. Localization-based super-resolution microscopy with an sCMOS camera. Opt. Express 19, 19156–19168 (2011).

    Article  PubMed  Google Scholar 

  70. Quan, T., Zeng, S. & Huang, Z.-L. Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. J. Biomed. Opt. 15, 066005 (2010).

    Article  PubMed  Google Scholar 

  71. Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pertsinidis, A., Zhang, Y.X. & Chu, S. Subnanometre single-molecule localization, registration and distance measurements. Nature 466, 647–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Lee, S.H. et al. Using fixed fiduciary markers for stage drift correction. Opt. Express 20, 12177–12183 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. York, A.G., Ghitani, A., Vaziri, A., Davidson, M.W. & Shroff, H. Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat. Methods 8, 327–333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Geisler, C. et al. Drift estimation for single marker switching based imaging schemes. Opt. Express 20, 7274–7289 (2012).

    Article  PubMed  Google Scholar 

  76. Mlodzianoski, M.J. et al. Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt. Express 19, 15009–15019 (2011).

    Article  PubMed  Google Scholar 

  77. Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159–1168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cella Zanacchi, F. et al. Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods 8, 1047–1049 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Deng, Y. & Shaevitz, J.W. Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking. Appl. Opt. 48, 1886–1890 (2009).

    Article  PubMed  Google Scholar 

  80. Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X.W. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jones, S.A., Shim, S.-H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Quirin, S., Pavani, S.R.P. & Piestun, R. Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions. Proc. Natl. Acad. Sci. USA 109, 675–679 (2012).

    Article  PubMed  Google Scholar 

  83. Ji, N., Milkie, D.E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Opazo, F. et al. Aptamers as potential tools for super-resolution microscopy. Nat. Methods 9, 938–939 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Ram, S., Ward, E.S. & Ober, R.J. Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl. Acad. Sci. USA 103, 4457–4462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gould, T.J., Hess, S.T. & Bewersdorf, J. Optical nanoscopy: from acquisition to analysis. Annu. Rev. Biomed. Eng. 14, 231–254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fitzgerald, J.E., Lu, J. & Schnitzer, M.J. Estimation theoretic measure of resolution for stochastic localization microscopy. Phys. Rev. Lett. 109, 048102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mukamel, E.A. & Schnitzer, M.J. Unified resolution bounds for conventional and stochastic localization fluorescence microscopy. Phys. Rev. Lett. 109, 168102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Banterle, N., Bui, K.H., Lemke, E.A. & Beck, M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J. Struct. Biol. 183, 363–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Nieuwenhuizen, R.P.J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013).This study reports on a practical measure to calculate the resolution in localization microscopy images based on FRC, taking into account the localization precision, among other factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Steinhauer, C., Jungmann, R., Sobey, T.L., Simmel, F.C. & Tinnefeld, P. DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 48, 8870–8873 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U. & Radenovic, A. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6, e22678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saxton, M.J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys, Biomol. Struct. 26, 373–399 (1997).

    Article  CAS  Google Scholar 

  96. Savin, T. & Doyle, P.S. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82, 041914 (2010).This detailed study describes the effect of the localization imprecision on the analysis of the mean-square displacements of trajectories that are obtained by SPT experiments.

    Article  CAS  Google Scholar 

  98. Kirshner, H., Aguet, F., Sage, D. & Unser, M. 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J. Microsc. 249, 13–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Hanser, B.M., Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Phase-retrieved pupil functions in wide-field fluorescence microscopy. J. Microsc. 216, 32–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Winick, K.A. Cramér-Rao lower bounds on the performance of charge-coupled-device optical position estimators. J. Opt. Soc. Am. A 3, 1809–1815 (1986).

    Article  CAS  Google Scholar 

  101. Bewersdorf, J., Schmidt, R. & Hell, S.W. Comparison of I5M and 4Pi-microscopy. J. Microsc. 222, 105–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99, 1303–1310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Ritter, J.G., Veith, R., Veenendaal, A., Siebrasse, J.P. & Kubitscheck, U. Light sheet microscopy for single molecule tracking in living tissue. PLoS ONE 5, e11639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, J., Miyanaga, Y., Ueda, M. & Hohng, S. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. Biophys. J. 103, 1691–1697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M. & Zhuang, X.W. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lippincott-Schwartz, J. & Patterson, G.H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19, 555–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, J. et al. Labeling cytosolic targets in live cells with blinking probes. J. Phys. Chem. Lett. 4, 2138–2146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hess, S.T. et al. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. USA 104, 17370–17375 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Zessin, P.J.M., Finan, K. & Heilemann, M. Super-resolution fluorescence imaging of chromosomal DNA. J. Struct. Biol. 177, 344–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Chan, W.C.W. & Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Rochira, J.A. et al. Fluorescence intermittency limits brightness in CdSe/ZnS nanoparticles quantified by fluorescence correlation spectroscopy. J. Phys. Chem. C 111, 1695–1708 (2007).

    Article  CAS  Google Scholar 

  115. Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A. & Nesbitt, D.J. Nonexponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

    Article  CAS  Google Scholar 

  116. Chen, W., Wang, Z., Lin, Z. & Lin, L. Absorption and luminescence of the surface states in ZnS nanoparticles. J. Appl. Phys. 82, 3111–3115 (1997).

    Article  CAS  Google Scholar 

  117. Lidke, K.A., Rieger, B., Jovin, T.M. & Heintzmann, R. Superresolution by localization of quantum dots using blinking statistics. Opt. Express 13, 7052–7062 (2005).

    Article  PubMed  Google Scholar 

  118. Delehanty, J.B., Mattoussi, H. & Medintz, I.L. Delivering quantum dots into cells: strategies, progress and remaining issues. Anal. Bioanal. Chem. 393, 1091–1105 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.D. acknowledges the financial support of the Agency for Innovation by Science and Technology (IWT, Belgium). Financial support from the Ghent University Special Research Fund and the Fund for Scientific Research Flanders (FWO, Belgium) is acknowledged by K.B. with gratitude. S.T.H. is funded by R15-GM094713 from the US National Institutes of Health and MTAF 1106 and 2061 from the Maine Technology Institute. A.D. is partially funded by PF7-EU 280804-2 LANIR CP-TP and by the Italian Programmi di Ricerca di Rilevante Interesse Nazionale 2010JFYFY2-002 grant. Appreciation goes to E. Kromann for the simulation of the images of fluorescent particles with a fixed dipole orientation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Diaspro or Kevin Braeckmans.

Ethics declarations

Competing interests

J.B. is a cofounder and consultant of Vutara, Inc., a company that develops super-resolution microscopes, and has personal financial interest in it.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and Supplementary Notes 1 and 2 (PDF 614 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschout, H., Zanacchi, F., Mlodzianoski, M. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods 11, 253–266 (2014). https://doi.org/10.1038/nmeth.2843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing