Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular nanosprings in spider capture-silk threads

Abstract

Spider capture silk is a natural material that outperforms almost any synthetic material in its combination of strength and elasticity. The structure of this remarkable material is still largely unknown, because spider-silk proteins have not been crystallized. Capture silk is the sticky spiral in the webs of orb-weaving spiders. Here we are investigating specifically the capture spiral threads from Araneus, an ecribellate orb-weaving spider. The major protein of these threads is flagelliform protein, a variety of silk fibroin. We present models for molecular and supramolecular structures of flagelliform protein, derived from amino acid sequences, force spectroscopy (molecular pulling) and stretching of bulk capture web. Pulling on molecules in capture-silk fibres from Araneus has revealed rupture peaks due to sacrificial bonds, characteristic of other self-healing biomaterials. The overall force changes are exponential for both capture-silk molecules and intact strands of capture silk.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Force spectroscopy of spider capture-silk molecules.
Figure 2: Molecular models for relaxed and extended flagelliform protein sequences from spider capture silk.
Figure 3: Force changes for stretching and relaxation of spider capture-silk molecules.
Figure 4: Force increases are exponential for stretching intact spider capture silk in air.
Figure 5: Schematic diagram for a network of identical springs that gives exponential force– distance curves on stretching.

Similar content being viewed by others

References

  1. Hinman, M.B., Jones, J.A. & Lewis, R.V. Synthetic spider silk: a modular fiber. Trends Biotechnol. 18, 374–379 (2000).

    Article  CAS  Google Scholar 

  2. Handbook of Chemistry and Physics (eds Weast, R.C., Selby, S.M. & Hodgman, C.D.) F-15 (Chemical Rubber, Cleveland, Ohio, 1965).

  3. Opell, B.D. & Bond, J.E. Capture thread extensibility of orb-weaving spiders: Testing punctuated and associative explanations of character evolution. Biol. J. Linnean Soc. 70, 107–120 (2000).

    Article  Google Scholar 

  4. Vollrath, F. & Edmonds, D.T. Modulation of the mechanical properties of spider silk by coating with water. Nature 340, 305–307 (1989).

    Article  Google Scholar 

  5. Kohler, T. & Vollrath, F. Thread biomechanics in the two orb-weaving spiders Araneus diadematus (Araneae, Araneidae) and Uloborus walckenaerius (Araneae, Uloboridae). J. Exp. Zool. 271, 1–17 (1995).

    Article  Google Scholar 

  6. Jelinski, L.W. et al. Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk. Int. J. Biol. Macromol. 24, 197–201 (1999).

    Article  CAS  Google Scholar 

  7. Alper, J. Protein structure: Stretching the limits. Science 297, 329–331 (2002).

    Article  CAS  Google Scholar 

  8. Urry, D.W. et al. Elastin: A representative ideal protein elastomer. Phil. Trans. R. Soc. Lond. B 357, 169–184 (2002).

    Article  CAS  Google Scholar 

  9. Vollrath, F. Spider webs and silks. Sci. Am. 266, 70–76 (1992).

    Article  CAS  Google Scholar 

  10. Bonthrone, K.M., Vollrath, F., Hunter, B.K. & Sanders, J.K.M. The elasticity of spiders' webs is due to water-induced mobility at a molecular level. Proc. R. Soc. Lond. B 248, 141–144 (1992).

    Article  CAS  Google Scholar 

  11. Lazaris, A. et al. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472–476 (2002).

    Article  CAS  Google Scholar 

  12. Service, R.F. Mammalian cells spin a spidery new yarn. Science 295, 419–421 (2002).

    Article  CAS  Google Scholar 

  13. Rief, M., Pascual, J., Saraste, M. & Gaub, H.E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286, 553–61. (1999).

    Article  CAS  Google Scholar 

  14. Engel, A. & Muller, D.J. Observing single biomolecules at work with the atomic force microscope. Nature Struct. Biol. 7, 715–718 (2000).

    Article  CAS  Google Scholar 

  15. Fisher, T.E., Marszalek, P.E. & Fernandez, J.M. Stretching single molecules into novel conformations using the atomic force microscope. Nature Struct. Biol. 7, 719–724 (2000).

    Article  CAS  Google Scholar 

  16. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H.E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  17. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  18. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  19. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H.E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    Article  CAS  Google Scholar 

  20. Marszalek, P.E., Oberhauser, A.F., Pang, Y.P. & Fernandez, J.M. Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    Article  CAS  Google Scholar 

  21. Lee, G.U., Chrisey, L.A. & Coulton, R.J. Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773 (1994).

    Article  CAS  Google Scholar 

  22. Rief, M., Clausen-Schaumann, H. & Gaub, H.E. Sequence-dependent mechanics of single DNA molecules. Nature Struct. Biol. 6, 346–9 (1999).

    Article  CAS  Google Scholar 

  23. Oroudjev, E. et al. Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc. Natl Acad. Sci. USA 99, 6460–6465 (2002).

    Article  CAS  Google Scholar 

  24. Zhang, W.K. et al. Single-molecule force spectroscopy on Bombyx mori silk fibroin by atomic force microscopy. Langmuir 16, 4305–4308 (2000).

    Article  CAS  Google Scholar 

  25. Li, S.F.Y., McGhie, A.J. & Tang, S.L. New internal structure of spider dragline silk revealed by atomic force microscopy. Biophys. J. 66, 1209–1212 (1994).

    Article  CAS  Google Scholar 

  26. Gould, S.A.C., Tran, K.T., Spagna, J.C., Moore, A.M.F. & Shulman, J.B. Short and long range order of the morphology of silk from Latrodectus hesperus (Black Widow) as characterized by atomic force microscopy. Int. J. Biol. Macromol. 24, 151–157 (1999).

    Article  CAS  Google Scholar 

  27. Thompson, J.B. et al. Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 (2001).

    Article  CAS  Google Scholar 

  28. Hayashi, C.Y. & Lewis, R.V. Molecular architecture and evolution of a modular spider silk protein gene. Science 287, 1477–1479 (2000).

    Article  CAS  Google Scholar 

  29. Drake, B. et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1589 (1989).

    Article  CAS  Google Scholar 

  30. Smith, B.L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  31. Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E. & Fernandez, J.M. The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379–384 (1999).

    Article  CAS  Google Scholar 

  32. Best, R.B., Li, B., Steward, A., Daggett, V. & Clarke, J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys. J. 81, 2344–56 (2001).

    Article  CAS  Google Scholar 

  33. Hoh, J.H., Cleveland, J.P., Prater, C.B., Revel, J.-P. & Hansma, P.K. Quantized adhesion detected with the atomic force microscope. J. Am. Chem. Soc. 114, 4917–4918 (1992).

    Article  CAS  Google Scholar 

  34. Dessinges, M.-N. et al. Stretching single stranded DNA, a model polyelectrolyte. Phys. Rev. Lett. 89, 248102 (2002).

    Article  Google Scholar 

  35. Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

  36. Marko, J.F. & Siggia, E.D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  37. Lewis, R.V. & Hayashi, C.Y. US Patent 5,994,099 in Official Gazette of the US Patent and Trademark Office Patents (1999).

  38. Hayashi, C.Y. & Lewis, R.V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275, 773–784 (1998).

    Article  CAS  Google Scholar 

  39. Gosline, J.M., Guerette, P.A., Ortlepp, C.S. & Savage, K.N. The Mechanical Design of Spider Silks: from Fibroin Sequence to Mechanical Function. J. Exp. Biol. 202, 3295–3303 (1999).

    CAS  Google Scholar 

  40. Vollrath, F. & Knight, D.P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    Article  CAS  Google Scholar 

  41. Bustamante, C., Smith, S.B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000).

    Article  CAS  Google Scholar 

  42. Waite, J.H., Vaccaro, E., Sun, C. & Lucas, J.M. Elastomeric gradients: A hedge against stress concentration in marine holdfasts? Phil. Trans. R. Soc. Lond. B 357, 143–153 (2002).

    Article  CAS  Google Scholar 

  43. Vollrath, F. et al. Compounds in the droplets of the orb spider's viscid spiral. Nature 345, 526–528 (1990).

    Article  CAS  Google Scholar 

  44. Vollrath, F. & Tillinghast, E.K. Glycoprotein glue beneath a spider web's aqueous coat. Naturwissenschaften 78, 557–559 (1991).

    Article  CAS  Google Scholar 

  45. Makarov, D.E., Wang, Z., Thompson, J.B. & Hansma, H.G. On the interpretation of force extension curves of single protein molecules. J. Chem. Phys. 116, 7760–7765 (2002).

    Article  CAS  Google Scholar 

  46. Shear, W.A., Palmer, J.M., Coddington, J.A. & Bonamo, P.M. A devonian spinneret: early evidence of spiders and silk use. Science 246, 479–481 (1989).

    Article  CAS  Google Scholar 

  47. Gatesy, J., Hayashi, C., Motriuk, D., Woods, J. & Lewis, R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291, 2603–2605 (2001).

    Article  CAS  Google Scholar 

  48. Kindt, J.H. et al. in Atomic Force Microscopy in Cell Biology (eds Jena, B.P. & Hoerber, H.) 213–230 (Academic, San Diego, 2002).

    Book  Google Scholar 

  49. Hayashi, C.Y., Shipley, N.H. & Lewis, R.V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275 (1999).

    Article  CAS  Google Scholar 

  50. Guerette, P.A., Ginzinger, D.G., Weber, B.H.F. & Gosline, J.M. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272, 112–115 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Bensimon for helping us discover that the force–distance curves are exponential, and H. Gaub, J. Fernandez, S. Fossey, M. Viani, R. Proksch, H. Li, and B. Smith for discussions. This work was supported by NSF MCB grants to H.G.H., NSF DMR grants to P.K.H. and to UCSB's Materials Research Laboratory; ARO DAAG55-98-1-0262 (C.Y.H.), the Robert A. Welch Foundation (D.E.M.), and Asylum Research, Santa Barbara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen G. Hansma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, N., Oroudjev, E., Mutz, S. et al. Molecular nanosprings in spider capture-silk threads. Nature Mater 2, 278–283 (2003). https://doi.org/10.1038/nmat858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing