Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermally stable coexistence of liquid and solid phases in gallium nanoparticles

Abstract

Gallium (Ga), a group III metal, is of fundamental interest due to its polymorphism and unusual phase transition behaviours. New solid phases have been observed when Ga is confined at the nanoscale. Herein, we demonstrate the stable coexistence, from 180 K to 800 K, of the unexpected solid γ-phase core and a liquid shell in substrate-supported Ga nanoparticles. We show that the support plays a fundamental role in determining Ga nanoparticle phases, with the driving forces for the nucleation of the γ-phase being the Laplace pressure in the nanoparticles and the epitaxial relationship of this phase to the substrate. We exploit the change in the amplitude of the evolving surface plasmon resonance of Ga nanoparticle ensembles during synthesis to reveal in real time the solid core formation in the liquid Ga nanoparticle. Finally, we provide a general framework for understanding how nanoscale confinement, interfacial and surface energies, and crystalline relationships to the substrate enable and stabilize the coexistence of unexpected phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HRTEM images of Ga nanoparticles deposited on the various substrates of sapphire, glass and Si(100).
Figure 2: Details by HRTEM images of the solid-core/liquid-shell Ga nanoparticles on sapphire, as well as of the Ga solid/sapphire interface and of the Ga solid/Ga liquid interface.
Figure 3: Energy and force balance for Ga nanoparticles on sapphire and on glass, respectively, and linear dependence of the size of the solid core on the nanoparticle size.
Figure 4: Real-time plasmon resonance ellipsometry monitoring of the nucleation and growth of the Ga nanoparticles.
Figure 5: LSPR spectra acquired as a function of temperature for approximately 100-nm-diameter Ga nanoparticles supported on sapphire.

Similar content being viewed by others

References

  1. Yang, C. C. & Mai, Y. W. Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater. Sci. Eng. R 79, 1–40 (2014).

    Article  Google Scholar 

  2. Takagi, M. Electron-diffraction study of liquid-solid transition of thin metal films. J. Phys. Soc. Jpn 9, 359–363 (1954).

    Article  Google Scholar 

  3. Thomson, W. On the equilibrium of vapour at a curved surface of liquid. Philos. Mag. 4, 448–452 (1871).

    Article  Google Scholar 

  4. Couchman, P. R. & Jesser, W. A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977).

    Article  CAS  Google Scholar 

  5. Shvartsburg, A. A. & Jarrold, M. F. Solid clusters above the bulk melting point. Phys. Rev. Lett. 85, 2530–2532 (2000).

    Article  CAS  Google Scholar 

  6. Breaux, G. A., Neal, C. M., Cao, B. & Jarrold, M. F. Tin clusters that do not melt: calorimetry measurements up to 650 K. Phys. Rev. B 71, 073410 (2005).

    Article  CAS  Google Scholar 

  7. Metois, J. J. & Heyraud, J. C. The overheating of lead crystals. J. Phys. 50, 3175–3179 (1989).

    Article  CAS  Google Scholar 

  8. Krishnamurty, S. et al. Size-sensitive melting characteristics of gallium clusters: comparison of experiment and theory for Ga17+ and Ga20+. Phys. Rev. B 73, 045406 (2006).

    Article  CAS  Google Scholar 

  9. Aguado, A. & Jarrold, M. F. Melting and freezing of metal clusters. Annu. Rev. Phys. Chem. 62, 151–172 (2011).

    Article  CAS  Google Scholar 

  10. Diao, G., Gall, K. & Dunn, L. M. Surface-stress-induced phase transformation in metal nanowires. Nature Mater. 2, 656–660 (2003).

    Article  CAS  Google Scholar 

  11. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Mater. 11, 917–924 (2012).

    Article  CAS  Google Scholar 

  12. Soares, B. F., Jonsson, F. & Zheludev, N. I. All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007).

    Article  CAS  Google Scholar 

  13. Blaber, M. G. et al. Eutectic liquid alloys for plasmonics: theory and experiment. Nano Lett. 12, 5275–5280 (2012).

    Article  CAS  Google Scholar 

  14. Knight, M. W. et al. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 9, 2049–2060 (2015).

    Article  CAS  Google Scholar 

  15. Bosio, L. Crystal structures of Ga(II) and Ga(III). J. Chem. Phys. 68, 1221–1223 (1978).

    Article  CAS  Google Scholar 

  16. Li, X. F. et al. Size-temperature phase diagram of gallium. Eur. Phys. Lett. 94, 16001 (2011).

    Article  CAS  Google Scholar 

  17. Chen, X. M., Fei, G. T. & Zheng, K. The solid state phase transition of gallium particles and its size dependence. J. Phys. Condens. Matter 21, 245403 (2009).

    Article  CAS  Google Scholar 

  18. MacDonald, K. F. et al. Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation. Europhys. Lett. 67, 614–619 (2004).

    Article  CAS  Google Scholar 

  19. Pochon, S., MacDonald, K. F., Knize, R. J. & Zheludev, N. I. Phase coexistence in gallium nanoparticles controlled by electron excitation. Phys. Rev. Lett. 92, 145702 (2004).

    Article  CAS  Google Scholar 

  20. Di Cicco, A. Phase transitions in confined gallium droplets. Phys. Rev. Lett. 81, 2942–2945 (1998).

    Article  CAS  Google Scholar 

  21. Liu, Z., Bando, Y., Mitome, M. & Zhan, J. Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Phys. Rev. Lett. 93, 095504 (2004).

    Article  CAS  Google Scholar 

  22. Yarema, M. et al. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage. J. Am. Chem. Soc. 136, 12422–12430 (2014).

    Article  CAS  Google Scholar 

  23. Parravicini, G. B. et al. Extreme undercooling (down to 90 K) of liquid metal nanoparticles. Appl. Phys. Lett. 89, 033123 (2006).

    Article  CAS  Google Scholar 

  24. Ghigna, P. et al. Metallic versus covalent bonding: Ga nanoparticles as a case study. J. Am. Chem. Soc. 129, 8026–8033 (2007).

    Article  CAS  Google Scholar 

  25. Breaux, G. A., Hillman, D. A., Neal, C. M., Benirschke, R. C. & Jarrold, M. F. Gallium cluster “magic melters”. J. Am. Chem. Soc. 126, 8628–8629 (2004).

    Article  CAS  Google Scholar 

  26. Steenbergen, G. K. & Gaston, N. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting. Phys. Chem. Chem. Phys. 15, 15325–15332 (2013).

    Article  CAS  Google Scholar 

  27. Nunez, S., Lopez, J. M. & Aguado, A. Neutral and charged gallium clusters: structures, physical properties, and implications for the melting features. Nanoscale 4, 6481–6492 (2012).

    Article  CAS  Google Scholar 

  28. Chacko, S., Joshi, K. & Kanhere, D. G. Why do gallium clusters have a higher melting point than the bulk? Phys. Rev. Lett. 92, 135506 (2004).

    Article  CAS  Google Scholar 

  29. Kurz, W. & Fisher, D. J. Fundamentals of Solidification (Trans Tech, 1989).

    Google Scholar 

  30. Wu, P. C. et al. Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticles wetting, localized surface plasmon dynamics and interface charge. Langmuir 25, 924–930 (2009).

    Article  CAS  Google Scholar 

  31. Bosio, L., Curien, H., Dupont, M. & Rimsky, A. Structure cristalline de Ga γ. Acta Crystallogr. B 28, 1974–1975 (1972).

    Article  CAS  Google Scholar 

  32. Van Ommen, A. H. Diffusion of ion-implanted Ga in SiO2 . J. Appl. Phys. 57, 1872–1875 (1985).

    Article  CAS  Google Scholar 

  33. Olesinski, R. W., Kanani, N. & Abbaschian, G. J. The Ga-Si (gallium-silicon) system. Bull. Alloy Phase Diagr. 6, 362–364 (1985).

    Article  CAS  Google Scholar 

  34. Werner, K. et al. Structural characteristics of gallium metal deposited on Si (0 0 1) by MOCVD. J. Cryst. Growth 405, 102–109 (2014).

    Article  CAS  Google Scholar 

  35. Jevasuwan, W. et al. Self-limiting growth of ultrathin Ga2O3 for the passivation of Al2O3/InGaAs interfaces. Appl. Phys. Express 7, 011201 (2014).

    Article  CAS  Google Scholar 

  36. Molodov, D. A. et al. Acceleration of grain boundary motion in Al by small additions of Ga. Philos. Mag. Lett. 72, 361–368 (1995).

    Article  CAS  Google Scholar 

  37. Konrad, H., Weissmuller, J., Birringer, R., Karmonik, C. & Gleiter, H. Kinetics of gallium films confined at grain boundaries. Phys. Rev. B 58, 2142–2149 (1998).

    Article  CAS  Google Scholar 

  38. Schwalbach, E. J., Warren, J. A., Wu, K. A. & Voorhees, P. W. Phase-field crystal model with a vapor phase. Phys. Rev. E 88, 023306 (2013).

    Article  CAS  Google Scholar 

  39. Degtyareva, O., McMahon, M. I., Allan, D. R. & Nelmes, R. J. Structural complexity in gallium under high pressure: relation to alkali elements. Phys. Rev. Lett. 93, 205502 (2004).

    Article  CAS  Google Scholar 

  40. Hock, C. et al. Premelting and postmelting in clusters. Phys. Rev. Lett. 102, 043401 (2009).

    Article  CAS  Google Scholar 

  41. Pyfer, K. L., Kafader, J. O., Yalamanchali, A. & Jarrold, M. F. Melting of size-selected gallium clusters with 60–183 atoms. J. Phys. Chem. A 118, 4900–4906 (2014).

    Article  CAS  Google Scholar 

  42. NIST Gallium Standard Reference Data Program (US Secretary of Commerce, 2016); http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440553&Mask=2#Thermo-Condensed

  43. Lyapin, A. G., Gromnitskaya, E. L., Yagafarov, O. F., Stal’gorova, O. V. & Brazhkin, V. V. Elastic properties of crystalline and liquid gallium at high pressures. J. Exp. Theor. Phys. 107, 818–827 (2008).

    Article  CAS  Google Scholar 

  44. Hui, C. Y. & Jagota, A. Deformation near a liquid contact line on an elastic substrate. Proc. R. Soc. A 470, 20140085 (2014).

    Article  Google Scholar 

  45. Style, R. W. & Dufresne, E. R. Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 8, 7177–7184 (2012).

    Article  CAS  Google Scholar 

  46. Turnbull, D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950).

    Article  CAS  Google Scholar 

  47. Tartaglino, U., Zykova-Timan, T., Ercolessi, F. & Tosatti, E. Melting and non-melting of solid surfaces and nanosystems. Phys. Rep. 411, 291–324 (2005).

    Article  CAS  Google Scholar 

  48. Hunderi, O. & Ryberg, R. Band structure and optical properties of gallium. J. Phys. F 4, 2084–2087 (1974).

    Article  CAS  Google Scholar 

  49. Paasch, G. Influence of interband transitions on plasmons in alkali metals: pseudopotential calculations. Phys. Status Solidi 38, K123 (1970).

    Article  CAS  Google Scholar 

  50. Gibbons, P. C. Damping of plasmons in the alkali metals: interband transitions and many-electron interactions. Phys. Rev. B 23, 2536–2541 (1981).

    Article  CAS  Google Scholar 

  51. Wu, P. C. et al. Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry. Appl. Phys. Lett. 90, 103119 (2007).

    Article  CAS  Google Scholar 

  52. Losurdo, M. et al. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J. Nanopart. Res. 11, 1521–1554 (2009).

    Article  CAS  Google Scholar 

  53. Steenbergen, K. G. & Gaston, N. Quantum size effects in the size–temperature phase diagram of gallium: structural characterization of shape-shifting clusters. Chem. Eur. J. 21, 2862–2869 (2015).

    Article  CAS  Google Scholar 

  54. Von Issendorff, B. & Cheshnovsky, O. Metal to insulator transitions in clusters. Annu. Rev. Phys. Chem. 56, 549–580 (2005).

    Article  CAS  Google Scholar 

  55. Voloshina, E., Rosciszewski, K. & Paulus, B. A recent first-principles study of the relationship between the structure and electronic properties of gallium. Phys. Rev. B 79, 045113 (2009).

    Article  CAS  Google Scholar 

  56. Schebarchov, D. & Gaston, N. Electronic shell structure in Ga12 icosahedra and the relation to the bulk forms of gallium. Phys. Chem. Chem. Phys. 14, 9912–9922 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all of the students and colleagues in our groups who are actively involved with nanoparticle research. M.L. acknowledges the support of the CNR STM 2014 programme. M.L. and K.H. acknowledge the support of the European Commission under the H2020 grant TWINFUSYON (GA692034).

Author information

Authors and Affiliations

Authors

Contributions

M.L. and A.S.B. conceived and designed the experiments. M.L. performed the experiments. S.R. conducted FIB work. A.S. conducted TEM characterization. K.H. performed thermodynamic modelling. A.S.B. supervised the work. All authors discussed the results, commented on the manuscript and co-wrote the paper.

Corresponding authors

Correspondence to Maria Losurdo or April S. Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 2136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losurdo, M., Suvorova, A., Rubanov, S. et al. Thermally stable coexistence of liquid and solid phases in gallium nanoparticles. Nature Mater 15, 995–1002 (2016). https://doi.org/10.1038/nmat4705

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing