Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere

Abstract

The two most striking surface features on Mars are the Tharsis Rise and the crustal dichotomy1,2. The crustal dichotomy, an elevation difference of 5 km between the southern highlands and the northern lowlands, is the oldest geological feature on Mars, and the Tharsis Rise is a vast volcanic construct in the equatorial region of the planet, near the dichotomy boundary. Tharsis volcanism was initiated in the southern highlands and the main volcanic centre subsequently migrated to its current location3,4,5, suggesting relative motion between the lithosphere and the underlying mantle. However, as a one-plate planet, Mars cannot have large-scale motion of the lithosphere according to the standard theory of stagnant-lid convection6,7. Here I use three-dimensional spherical shell models of mantle convection to demonstrate that a unique mode of horizontal motion of the lithosphere, differential rotation, is readily excited for Mars by one-plume convection and lithospheric thickness variations. The suggested mechanism explains the temporal and spatial patterns of Tharsis volcanism and offers a path to a unified model for Tharsis rise and the crustal dichotomy, with implications for volcanism, tectonics and true polar wander on other one-plate planetary bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of surface topography on Mars.
Figure 2: Three-dimensional thermal structure from numerical models.
Figure 3: Modelling results for spectra and flow velocity.
Figure 4: Heat flux and a unified model.

Similar content being viewed by others

References

  1. Solomon, S. C. et al. New perspectives on ancient Mars. Science 307, 1214–1220 (2005).

    Article  Google Scholar 

  2. Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133–161 (2005).

    Article  Google Scholar 

  3. Frey, H. V. Thaumasia: A fossilized early forming Tharsis uplift. J. Geophys. Res. 84, 1009–1023 (1979).

    Article  Google Scholar 

  4. Mege, D. & Masson, P. A plume tectonics model for the Tharsis province, Mars. Planet. Space Sci. 44, 1499–1546 (1996).

    Article  Google Scholar 

  5. Johnson, C. L. & Phillips, R. J. Evolution of the Tharsis regions of Mars: Insights from magnetic field observations. Earth Planet. Sci. Lett. 230, 241–254 (2005).

    Article  Google Scholar 

  6. Head, J. W. & Solomon, S. C. Tectonic evolution of the terrestrial planets. Science 213, 62–76 (1981).

    Article  Google Scholar 

  7. Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995).

    Article  Google Scholar 

  8. Frey, H. Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, E08S91 (2006).

    Article  Google Scholar 

  9. Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793.

  10. Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008).

    Article  Google Scholar 

  11. Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. Implications of an impact origin for the martian hemispheric dichotomy. Nature 453, 1220–1224 (2008).

    Article  Google Scholar 

  12. Zhong, S. J. & Zuber, M. T. Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001).

    Article  Google Scholar 

  13. Elkins-Tanton, L., Parmentier, E. M. & Hess, P. Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005).

    Article  Google Scholar 

  14. Ke, Y. & Solomatov, V. S. Early transient superplumes and the origin of the Martian crustal dichotomy. J. Geophys. Res. 110, E10001 (2006).

    Article  Google Scholar 

  15. Roberts, J. H. & Zhong, S. J. Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. 111, E06013 (2006).

    Article  Google Scholar 

  16. Phillips, R. J. et al. Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001).

    Article  Google Scholar 

  17. Kiefer, W. S. Shergottite formation and implications for present-day Mantle convection on Mars. Meteorit. Planet. Sci. 38, 1815–1832 (2003).

    Article  Google Scholar 

  18. Harder, H. & Christensen, U. R. A one-plume model of Martian mantle convection. Nature 380, 507–509 (1996).

    Article  Google Scholar 

  19. Hager, B. H. & O’Connell, R. J. A simple global model of plate dynamics and mantle convection. J. Geophys. Res. 86, 4843–4867 (1981).

    Article  Google Scholar 

  20. Zhong, S. J. Role of ocean-continent contrast and continental keels on plate motion, net rotation of lithosphere and the geoid. J. Geophys. Res. 106, 703–712 (2001).

    Article  Google Scholar 

  21. McNamara, A. K. & Zhong, S. J. Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res. 109, B07402 (2004).

    Article  Google Scholar 

  22. Neumann, G. A. et al. Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109, E08002 (2004).

    Article  Google Scholar 

  23. Pollack, H. N. Cratonization and thermal evolution of the mantle. Earth Planet. Sci. Lett. 80, 175–182 (1986).

    Google Scholar 

  24. King, S. D. Archean cratons and mantle dynamics. Earth Planet. Sci. Lett. 234, 1–14 (2005).

    Article  Google Scholar 

  25. Nimmo, F. Tectonic consequences of Martian dichotomy modification by lower crustal flow and erosion. Geology 33, 533–5361 (2005).

    Article  Google Scholar 

  26. Wenzel, M. J., Manga, M. & Jellinek, A. M. Tharsis as a consequence of Mars’ dichotomy and layered mantle. Geophys. Res. Lett. 31, L04702 (2004).

    Article  Google Scholar 

  27. Wullner, U. & Harder, H. Convection underneath a crust inhomogeneously enriched heat sources: Application to Martian mantle dynamics. Phys. Earth Planet. Inter. 109, 129–150 (1998).

    Article  Google Scholar 

  28. Stanley, S., Elkins-Tanton, L., Zuber, M. T. & Parmentier, E. M. Mars’ paleomagnetic field as the result of a single-hemisphere dynamo. Science 321, 1822–1825 (2008).

    Article  Google Scholar 

  29. Redmond, H. L. & King, S. D. The crustal dichotomy and edge driven convection: A mechanism for tharsis rise volcanism? Lunar Planet. Sci. Conf. XXXVI 1960 (abstr.) (2005).

  30. Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I. & Richards, M. A. Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447, 840–843 (2007).

    Article  Google Scholar 

  31. Matsuyama, I., Nimmo, F. & Mitrovica, J. X. Reorientation of planets with lithospheres: The effect of elastic energy. Icarus 191, 401–412 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank F. Nimmo for discussions on TPW and S. King for reviewing the manuscript. This work is supported by the NASA MFR programme and the David and Lucile Packard Foundation. CIG distributes the software CitcomS that is used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Zhong.

Supplementary information

Supplementary Information, Table S1

Supplementary Information (PDF 357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, S. Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. Nature Geosci 2, 19–23 (2009). https://doi.org/10.1038/ngeo392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing