Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The distribution of CpG islands in mammalian chromosomes

An Erratum to this article was published on 01 August 1994

Abstract

Using fluorescent in situ suppression hybridization to metaphase chromosomes, we have directly shown that CpG islands are predominantly found in the early replicating (R band) regions of the genome. Conversely, late replicating (G band) DNA is sparsely populated with islands. The very highest concentration of CpG islands is in a subset of R bands, most of which are known as T bands. We suggest that there is an interdependence between the differences in island density and the behaviour of chromosomal domains. Our findings indicate which regions of the genome will yield the highest density of coding sequence information. An awareness of local island density may influence the choice of method for identifying exons in genomic DNA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bickmore, W.A. & Bird, A.P. The use of restriction endonucleases to detect genes. Methods Enzym. 216, 224–244 (1992).

    Article  CAS  Google Scholar 

  2. Bickmore, W.A. & Sumner, A.T. Mammalian chromosome banding-an expression of genome organization. Trends Genet. 5, 144–148 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Holmquist, G.P. Evolution of chromosome bands: molecular ecology of non-coding DNA. J. molec. Evol. 28, 469–486 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Sumner, A.T. (ed) Chromosome banding (Unwin Hymen Ltd, London, 1990).

    Google Scholar 

  5. Holmquist, G.P. Chromosome bands, their chromatin flavours and their functional features. Am. J. hum. Genet. 51, 17–37 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Drouin, R., Lemieux, N. & Richer, C.-L. Analysis of DNA replication during S-phase by means of dynamic chromosome banding at high resolution. Chromosoma 99, 273–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Korenberg, J.R. & Rykowski, M.C. Human chromosome organization: Alu and lines distribution on metaphase chromosomes. Cell 53, 391–400 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Manuelidis, L. & Ward, D.C. Chromosomal and nuclear distribution of the HinDIII 1.9kb human DNA repeat segment. Chromosoma 91, 28–38 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Bernardi, G. The isochore organisation of the human genome. A. Rev. Genet. 23, 637–661 (1989).

    Article  CAS  Google Scholar 

  10. Saccone, S., de Sario, A., Della Valle, G. & Bernardi, G. The highest gene concentrations in the human genome are in T bands of metaphase chromosomes. Proc. natn. Acad. Sci. U.S.A. 89, 4913–4917 (1992).

    Article  CAS  Google Scholar 

  11. Yunis, J.J. & Tsai, M.Y. Mapping of polysomal mRNA and hnRNA to the lightly staining G-bands of human chromosomes. Cytogenet. Cell Genet. 22, 364–367 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Sentis, C., Ludena, P. & Fernandez-Piqueras, J. Non-uniform distribution of methylatabie CCGG sequences on human chromosomes shown by in situ methylation. Chromosoma 102, 267–271 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Craig, J.M. & Bickmore, W.A. Chromosome bands — flavors to savour. BioEssays 15, 349–354 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Bird, A.P. CpG-rich islands as gene markers in the vertebrate nucleus. Trends Genet. 3, 342–347 (1987).

    Article  CAS  Google Scholar 

  15. Cross, S., Kovarik, P., Schmidtke, J. & Bird, A. Non-methylated islands in fish genomes are GC-poor. Nucl. Acids Res. 19, 1469–1474 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bird, A.P., Taggart, M.H., Frommer, M., Miller, O.J. & Macleod, D. A fraction of the mouse genome that is derived from islands of non-methylated, CpG-rich DNA. Cell 40, 91–99 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell, A.R. Hypomethylation of human heterochromatin detected by restriction enzyme nick translation. Exp. Cell Res. 202, 203–206 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Glaser, T., Housman D., Lewis, W.H., Gerhard, D., Jones, C. A fine structure deletion map of human chromosome 11 p: analysis of the J1 series hybrids. Somat. Cell Genet. 15, 477–501 (1989).

    Article  CAS  Google Scholar 

  19. Francke, U. Digitized and differentially shaded human chromosome ideograms for genomic applications. Cytogenet. Cell Genet. 65, 206–219 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Cheung, S.W., Crane, J.P. & Beaver, H. Correlation between phenotypic expression of de novo marker chromosomes and genomic organization using replication banding. Prenatal Diag. 10, 717–724 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Nasir, J., Maconochie, M.K., Brown, S.D.M. Co-amplificatlon of L1 elements with low copy repeats in G dark bands: implications for genome organisation. Nucl. Acids Res. 19, 3255–3260 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gross, D.S. & Garrard, W.T. Nuclease hypersensitive sites in chromatin. A. Rev. Biochem. 57, 159–197 (1988).

    Article  CAS  Google Scholar 

  23. Tazi, J. & Bird, A. Alternative chromatin structure at CpG islands. Cell 60, 909–920 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Jeppesen, P., Turner, B.M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Disney, J.E., Johnson, K.R., Magnuson, N.S., Sylvester, S.R. & Reeves, R. High-mobility group protein HMG-I localizes to G/Q-and C bands of human and mouse chromosomes. J. Cell Biol. 109, 1975–1982 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Jackson, D.A. & Cook, P.R. Transcription occurs at a nucleoskeleton. EMBO J. 4, 919–925 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carter, K.C., Taneja, K.L. & Lawrence, J.B. Discrete nuclear domains of poly (A) RNA and their relationship to the functional organisation of the nucelus. J. Cell Biol. 115, 1191–1202 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Hozak, P., Hassan, A.B., Jackson, D.A. & Cook, P.R. Visualization of replication factories attached to a nucleoskeleton. Cell 73, 361–373 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Leonhardt, H., Page, A.W., Weier, H.U. & Bestor, T.H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865–873 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Holmquist, G.P. Role of replication time in the control of tissue specific gene expression. Am. J. hum. Genet. 40, 151–173 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Riggs, A.D. & Pfeifer, G.P. X chromosome inactivation and cell memory. Trends Genet. 8, 169–173 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Wolfe, K.H., Sharp, P.M. & Li W.-H. Mutation rates among regions of the mammalian genome. Nature 337, 283–285 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Wu, T.-C., Lichten, M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 283, 515–518 (1994).

    Article  Google Scholar 

  34. Janson, M. et al. Detailed physical map of human chromosomal region 11q12–13 shows high meiotic recombination rate around the MEN1 locus. Proc. natn. Acad. Sci. U.S.A. 88, 10609–10613 (1991).

    Article  CAS  Google Scholar 

  35. Yunis, J.J. Interphase deooxyribonucleic acid condensation, late deoxyribonucleic acid replication and gene inactivation. Nature 205, 311–312 (1965).

    Article  CAS  PubMed  Google Scholar 

  36. Comings, D.E. Mechanisms of chromosome banding and implications for chromosome structure. A. Rev. Genet. 12, 25–46 (1978).

    Article  CAS  Google Scholar 

  37. Soriano, P., Meunier-Rotival, M. and Bernardi, G. The distribution of interspersed repeats is non-uniform and conserved in the mouse and human genomes. Proc. natn. Acad. Sci. U.S.A. 80, 1816–1820 (1983).

    Article  CAS  Google Scholar 

  38. Manuelidis, L. & Chen, T.L. A unified model of eukaryotic chromosomes. Cytometry 11, 8–25 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Oliver, S.G. et al. Complete DNA sequence of yeast chromosome III. Nature 357, 38–46 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Sharp, P.M. & Lloyd, A.T. Regional base composition variation along yeast chromosome III: evolution of chromosome primary structure. Nucl. Acids Res. 21, 179–183 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gray, A.J., Beecher, D.E. & Olson, M.V. Computer based image analysis of 1-D electrophoretic gels used for the separation of DNA restriction fragments. Nucl. Acids Res. 12, 473–491 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fantes, J.A. et al. Submicroscopic deletions at the WAGR locus, revealed by nonradioactive in situ hybridization. Am. J. hum. Genet. 51, 1286–1294 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, J., Bickmore, W. The distribution of CpG islands in mammalian chromosomes. Nat Genet 7, 376–382 (1994). https://doi.org/10.1038/ng0794-376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0794-376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing