Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

Abstract

Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in 70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (6% increase in risk per year; P = 3 × 10−14), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Miami plot of HapMap and exome SNP associations.
Figure 2: Multiple signals at HELB and relationship to DNA helicase B protein sequence.
Figure 3: Classification of the genes identified as being involved in DDR pathways at genetic loci associated with ANM.

Similar content being viewed by others

References

  1. Hartge, P. Genetics of reproductive lifespan. Nat. Genet. 41, 637–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Lambalk, C.B., van Disseldorp, J., de Koning, C.H. & Broekmans, F.J. Testing ovarian reserve to predict age at menopause. Maturitas 63, 280–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. te Velde, E.R. & Pearson, P.L. The variability of female reproductive ageing. Hum. Reprod. Update 8, 141–154 (2002).

    Article  PubMed  Google Scholar 

  4. Stolk, L. et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat. Genet. 44, 260–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perry, J.R. et al. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Hum. Mol. Genet. 23, 2490–2497 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. doi:10.1038/ng.3404 (28 September 2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oktem, O. & Oktay, K. The ovary: anatomy and function throughout human life. Ann. NY Acad. Sci. 1127, 1–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Guler, G.D. et al. Human DNA helicase B (HDHB) binds to replication protein A and facilitates cellular recovery from replication stress. J. Biol. Chem. 287, 6469–6481 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Weischer, M., Bojesen, S.E., Ellervik, C., Tybjaerg-Hansen, A. & Nordestgaard, B.G. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J. Clin. Oncol. 26, 542–548 (2008).

    Article  PubMed  Google Scholar 

  10. AlAsiri, S. et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J. Clin. Invest. 125, 258–262 (2015).

    Article  PubMed  Google Scholar 

  11. Fogli, A. et al. Ovarian failure related to eukaryotic initiation factor 2B mutations. Am. J. Hum. Genet. 72, 1544–1550 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mandon-Pépin, B. et al. Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur. J. Endocrinol. 158, 107–115 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Linder, B. et al. Tdrd3 is a novel stress granule–associated protein interacting with the Fragile-X syndrome protein FMRP. Hum. Mol. Genet. 17, 3236–3246 (2008).

    CAS  PubMed  Google Scholar 

  15. Eicher, J.D. et al. GRASP v2.0: an update on the Genome-Wide Repository of Associations between SNPs and phenotypes. Nucleic Acids Res. 43, D799–D804 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Morris, D.H. et al. Body mass index, exercise, and other lifestyle factors in relation to age at natural menopause: analyses from the Breakthrough Generations study. Am. J. Epidemiol. 175, 998–1005 (2012).

    Article  PubMed  Google Scholar 

  17. Perry, J.R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 13, 1141–1151 (2012).

  19. Vimaleswaran, K.S. et al. Association of vitamin D status with arterial blood pressure and hypertension risk: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 2, 719–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 353–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dickson, S.P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D.B. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Monteiro, A.N. & Freedman, M.L. Lessons from postgenome-wide association studies: functional analysis of cancer predisposition loci. J. Intern. Med. 274, 414–424 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghoussaini, M., Pharoah, P.D. & Easton, D.F. Inherited genetic susceptibility to breast cancer: the beginning of the end or the end of the beginning? Am. J. Pathol. 183, 1038–1051 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Titus, S. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 5, 172ra21 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Fan, S. et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284, 1354–1356 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Hu, Y. et al. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation–induced nuclear foci. Genes Dev. 25, 685–700 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsutsui, Y. et al. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLoS Genet. 10, e1004542 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Simandlova, J. et al. FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells. J. Biol. Chem. 288, 34168–34180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chapman, J.R., Taylor, M.R. & Boulton, S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Wood-Trageser, M.A. et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am. J. Hum. Genet. 95, 754–762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oktay, K., Kim, J.Y., Barad, D. & Babayev, S.N. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J. Clin. Oncol. 28, 240–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Collins, I.M. et al. Do BRCA1 and BRCA2 mutation carriers have earlier natural menopause than their noncarrier relatives? Results from the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. J. Clin. Oncol. 31, 3920–3925 (2013).

    Article  PubMed  Google Scholar 

  33. Manson, J.E. et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women's Health Initiative randomized trials. J. Am. Med. Assoc. 310, 1353–1368 (2013).

    Article  CAS  Google Scholar 

  34. Levy-Lahad, E. & Friedman, E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer 96, 11–15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rance, N.E. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 30, 111–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Silveira, L.F. & Latronico, A.C. Approach to the patient with hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 98, 1781–1788 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. García-Ortega, J. et al. Expression of neurokinin B/NK3 receptor and kisspeptin/KISS1 receptor in human granulosa cells. Hum. Reprod. 29, 2736–2746 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Gaytan, F. et al. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology 155, 3088–3097 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jackson, S.P. & Bartke, J. The DNA damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, J.J. et al. A comparative analysis of family-based and population-based association tests using whole genome sequence data. BMC Proc. 8, S33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhang, X. et al. Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs. BMC Genomics 15, 532 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Segrè, A.V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hoffman, M.M. et al. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 41, 827–841 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  54. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  56. International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

  57. Eeles, R.A. et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 45, 385–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

  59. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. doi:10.1038/ng.3406 (28 September 2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

For full acknowledgments, see the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors reviewed the original and revised manuscripts. Statistical analysis: F.R.D., K.S.R., D.J.T., K.L.L., N.P., D.I.C., L.S., H.K.F., P.S., B.B.-S., T.E., A.D.J., C.E.E., N.F., C. He, E. Altmaier, J.A.B., L.L.F., J.E.H., S.E.J., M.F.K., P.F.M., T.N., E.P., A. Robino, L.M.R., U.M.S., J.A.S., A.T., M.T., D. Vuckovic, J.Y., W. Zhao, E. Albrecht, N.A., T.C., J.-J.H., M.M., A.V.S., T. Tanaka, J.R.B.P. Sample collection, genotyping and phenotyping: G.R.A., I.L.A., H.A.-C., A.C.A., V.A., A.M.A., C. Barbieri, M.W.B., A.B.-F., J.B., L.B., S.J.B., C. Blomqvist, E.B., N.V.B., S.E.B., M.K.B., A.-L.B.-D., T.S.B., H. Brauch, H. Brenner, T.B., B.B., A. Campbell, H.C., S.J.C., J.R.C., Y.-D.I.C., G.C.-T., F.J.C., A.D.C., A. Cox, K.C., H.D., I.D.V., E.W.D., J.D., P.D., T.D., I.d.-S.-S., A.M.D., J.D.E., P.A.F., J.D.F., J.F., D.F.-J., I.G., M.E.G., M.G.-C., G.G. Giles, G.G. Girotto, M.S.G., A.G.-N., M.O.G., M.L.G., D.F.G., P.G., X.G., C.A.H., P.H., U.H., B.E.H., L.J.H., A.H., G.H., M.J.H., J.L.H., F.B.H., J.H., K.H., D.J.H., A.J., M.K., D.K., J.A.K., I.K., C.K., V.-M.K., J.K., V.K., D.L., C.L., J. Li, X.L., S.L., Y.L., J. Luan, J. Lubinski, R.M., A. Mannermaa, J. Manz, S.M., J. Marten, N.G.M., C.M., A. Meindl, K.M., E.M., L.M., R.L.M., M.M.-N., M.N., B.M.N., H.N., P.N., A.B.N., B.G.N., J.E.O., S.P., P.P., U.P., A. Petersmann, J.P., P.D.P.P., N.N.P., A. Pirie, G.P., O.P., D.P., B.M.P., K.P., P.R., L.J.R., F.R., I.R., A. Rudolph, D.R., C.F.S., S.S., E.J.S., D. Schlessinger, M.K.S., F.S., R.K.S., M.J.S., R.A.S., C.M.S., J.S., R.S., M.C.S., D. Stöckl, K. Strauch, A.S., K.D.T., U.T., A.E.T., I.T., T. Truong, L.T., S.T.T., D. Vozzi, Q.W., M.W., G.W., J.F.W., R.W., B.B.H.R.W., A.F.W., D.Y., T.Z., W. Zheng, M.Z. Individual study principal investigators: S.B., D.I.B., J.E.B., L.F., G.W.M., V.G., T.D.S., C.M.v.D., B.Z.A., M.C., L.C., D.F.E., P.P.G., C.G., T.B.H., C. Hayward, S.L.R.K., P.K., B.M., A. Metspalu, A.C.M., A.P.R., P.M.R., J.I.R., D.T., A.G.U., S.U., H.V., N.J.W., D.R.W., L.M.Y.-A., A.L.P., K. Stefansson, J.A.V., K.K.O., J.C.-C., J.M.M., A. Murray. Working group: F.R.D., K.S.R., D.J.T., K.L.L., N.P., D.I.C., L.S., H.K.F., P.S., B.B.-S., T.E., A.D.J., C.E.E., N.F., C. He, A.L.P., K. Stefansson, J.A.V., K.K.O., J.C.-C., J.M.M., J.R.B.P., A. Murray.

Corresponding author

Correspondence to John R B Perry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of members and affiliations appears in the Supplementary Note.

A full list of members and affiliations appears in the Supplementary Note.

A full list of members and affiliations appears in the Supplementary Note.

A full list of members and affiliations appears in the Supplementary Note.

A full list of members and affiliations appears in the Supplementary Note.

A full list of members and affiliations appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Note. (PDF 2060 kb)

Supplementary Tables 1–27

Supplementary Tables 1–27. (XLSX 804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, F., Ruth, K., Thompson, D. et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet 47, 1294–1303 (2015). https://doi.org/10.1038/ng.3412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3412

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer