Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Toxin-antitoxin systems in bacterial growth arrest and persistence

Abstract

Bacterial persister cells constitute a subpopulation of genetically identical, metabolically slow-growing cells that are highly tolerant of antibiotics and other environmental stresses. Recent studies have demonstrated that gene loci known as toxin-antitoxin (TA) modules play a central role in the persister state. Under normal growth conditions, antitoxins potently inhibit the activities of the toxins. In contrast, under conditions of stress, the antitoxins are selectively degraded, freeing the toxins to inhibit essential cellular processes, such as DNA replication and protein translation. This inhibition results in rapid growth arrest. In this Review, we highlight recent discoveries of these multifaceted TA systems with a focus on the newly uncovered mechanisms, especially conditional cooperativity, that are used to regulate cell growth and persistence. We also discuss the potential for targeting TA systems for antimicrobial drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Toxin-antitoxin systems.
Figure 2: TA systems in E. coli. (a) TA loci in the E. coli genome (type I systems not shown).
Figure 3: TA systems and persistence.
Figure 4: The molecular basis of conditional cooperativity.
Figure 5: Characteristics of type II TA systems that exhibit or do not exhibit conditional cooperativity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Neushul, P. Science, government, and the mass production of penicillin. J. Hist. Med. Allied Sci. 48, 371–395 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Balaban, N.Q. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr. Opin. Genet. Dev. 21, 768–775 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Bigger, J. Treatment of Staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500 (1944).

    Article  Google Scholar 

  4. Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Spoering, A.L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrison, J.J. et al. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob. Agents Chemother. 53, 2253–2258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shah, D. et al. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 6, 53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerdes, K., Christensen, S.K. & Løbner-Olesen, A. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Magnuson, R.D. Hypothetical functions of toxin-antitoxin systems. J. Bacteriol. 189, 6089–6092 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogura, T. & Hiraga, S. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. USA 80, 4784–4788 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gerdes, K., Rasmussen, P.B. & Molin, S. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc. Natl. Acad. Sci. USA 83, 3116–3120 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lehnherr, H., Maguin, E., Jafri, S. & Yarmolinsky, M.B. Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233, 414–428 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Gotfredsen, M. & Gerdes, K. The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol. Microbiol. 29, 1065–1076 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Hayes, F. & Van Melderen, L. Toxins-antitoxins: diversity, evolution and function. Crit. Rev. Biochem. Mol. Biol. 46, 386–408 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Christensen, S.K. et al. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol. Microbiol. 51, 1705–1717 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Van Melderen, L., Bernard, P. & Couturier, M. Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol. Microbiol. 11, 1151–1157 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Ramage, H.R., Connolly, L.E. & Cox, J.S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5, e1000767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kussell, E., Kishony, R., Balaban, N.Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thisted, T., Sørensen, N.S., Wagner, E.G. & Gerdes, K. Mechanism of post-segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5′-end single-stranded leader and competes with the 3′-end of Hok mRNA for binding to the mok translational initiation region. EMBO J. 13, 1960–1968 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerdes, K., Nielsen, A., Thorsted, P. & Wagner, E.G. Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable hok, srnB and pndA effector messenger RNAs. J. Mol. Biol. 226, 637–649 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Brantl, S. & Jahn, N. sRNAs in bacterial type I and type III toxin-antitoxin systems. FEMS Microbiol. Rev. 39, 413–427 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Pedersen, K. & Gerdes, K. Multiple hok genes on the chromosome of Escherichia coli. Mol. Microbiol. 32, 1090–1102 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Pandey, D.P. & Gerdes, K. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966–976 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Afif, H., Allali, N., Couturier, M. & Van Melderen, L. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol. Microbiol. 41, 73–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Bernard, P. et al. The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J. Mol. Biol. 234, 534–541 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, B.L., Lord, D.M., Grigoriu, S., Peti, W. & Page, R. The Escherichia coli toxin MqsR destabilizes the transcriptional repression complex formed between the antitoxin MqsA and the mqsRA operon promoter. J. Biol. Chem. 288, 1286–1294 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. et al. Antitoxin MqsA helps mediate the bacterial general stress response. Nat. Chem. Biol. 7, 359–366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, Y., Pogliano, J., Helinski, D.R. & Konieczny, I. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44, 971–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Christensen-Dalsgaard, M., Jørgensen, M.G. & Gerdes, K. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol. Microbiol. 75, 333–348 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Pedersen, K. et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y. et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913–923 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Yamaguchi, Y., Park, J.H. & Inouye, M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746–28753 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Castro-Roa, D. et al. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat. Chem. Biol. 9, 811–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Cruz, J.W. et al. Doc toxin is a kinase that inactivates elongation factor Tu. J. Biol. Chem. 289, 7788–7798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Germain, E., Castro-Roa, D., Zenkin, N. & Gerdes, K. Molecular mechanism of bacterial persistence by HipA. Mol. Cell 52, 248–254 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kaspy, I. et al. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat. Commun. 4, 3001 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Brown, B.L. et al. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5, e1000706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kamada, K., Hanaoka, F. & Burley, S.K. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11, 875–884 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Neubauer, C. et al. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139, 1084–1095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Christensen, S.K. & Gerdes, K. RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol. Microbiol. 48, 1389–1400 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Feng, S. et al. YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Nucleic Acids Res. 41, 9549–9556 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y., Yamaguchi, Y. & Inouye, M. Characterization of YafO, an Escherichia coli toxin. J. Biol. Chem. 284, 25522–25531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maehigashi, T., Ruangprasert, A., Miles, S.J. & Dunham, C.M. Molecular basis of ribosome recognition and mRNA hydrolysis by the E. coli YafQ toxin. Nucleic Acids Res. 43, 8002–8012 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hurley, J.M. & Woychik, N.A. Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J. Biol. Chem. 284, 18605–18613 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schureck, M.A. et al. Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. J. Biol. Chem. 289, 1060–1070 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Schureck, M.A., Dunkle, J.A., Maehigashi, T., Miles, S.J. & Dunham, C.M. Defining the mRNA recognition signature of a bacterial toxin protein. Proc. Natl. Acad. Sci. USA 112, 13862–13867 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Christensen, S.K., Pedersen, K., Hansen, F.G. & Gerdes, K. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J. Mol. Biol. 332, 809–819 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Arbing, M.A. et al. Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Structure 18, 996–1010 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bøggild, A. et al. The crystal structure of the intact E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity. Structure 20, 1641–1648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schumacher, M.A. et al. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323, 396–401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fineran, P.C. et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl. Acad. Sci. USA 106, 894–899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Short, F.L. et al. Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Proc. Natl. Acad. Sci. USA 110, E241–E249 (2013).

    Article  PubMed  Google Scholar 

  55. Brown, J.M. & Shaw, K.J. A novel family of Escherichia coli toxin-antitoxin gene pairs. J. Bacteriol. 185, 6600–6608 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Masuda, H., Tan, Q., Awano, N., Wu, K.P. & Inouye, M. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol. Microbiol. 84, 979–989 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, X. et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8, 855–861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, X. et al. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ. Microbiol. 15, 1734–1744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aakre, C.D., Phung, T.N., Huang, D. & Laub, M.T. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Mol. Cell 52, 617–628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moyed, H.S. & Bertrand, K.P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, Y. & Wood, T.K. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem. Biophys. Res. Commun. 391, 209–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Maisonneuve, E., Shakespeare, L.J., Jørgensen, M.G. & Gerdes, K. Bacterial persistence by RNA endonucleases. Proc. Natl. Acad. Sci. USA 108, 13206–13211 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schumacher, M.A. et al. HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature 524, 59–64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Germain, E., Roghanian, M., Gerdes, K. & Maisonneuve, E. Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proc. Natl. Acad. Sci. USA 112, 5171–5176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Helaine, S. et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verstraeten, N. et al. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol. Cell 59, 9–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Rotem, E. et al. Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc. Natl. Acad. Sci. USA 107, 12541–12546 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154, 1140–1150 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Garcia-Pino, A. et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Overgaard, M., Borch, J., Jørgensen, M.G. & Gerdes, K. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol. Microbiol. 69, 841–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Guglielmini, J. & Van Melderen, L. Bacterial toxin-antitoxin systems: Translation inhibitors everywhere. Mob. Genet. Elements 1, 283–290 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dienemann, C., Bøggild, A., Winther, K.S., Gerdes, K. & Brodersen, D.E. Crystal structure of the VapBC toxin-antitoxin complex from Shigella flexneri reveals a hetero-octameric DNA-binding assembly. J. Mol. Biol. 414, 713–722 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Garcia-Pino, A. et al. Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. J. Biol. Chem. 283, 30821–30827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. De Jonge, N. et al. Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol. Cell 35, 154–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Choy, M.S. et al. Understanding the antagonism of retinoblastoma protein dephosphorylation by PNUTS provides insights into the PP1 regulatory code. Proc. Natl. Acad. Sci. USA 111, 4097–4102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peti, W., Nairn, A.C. & Page, R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 280, 596–611 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Wright, P.E. & Dyson, H.J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gough, J. & Dunker, A.K. Sequences and topology: disorder, modularity, and post/pre translation modification. Curr. Opin. Struct. Biol. 23, 417–419 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Oberer, M., Zangger, K., Gruber, K. & Keller, W. The solution structure of ParD, the antidote of the ParDE toxin antitoxin module, provides the structural basis for DNA and toxin binding. Protein Sci. 16, 1676–1688 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Madl, T. et al. Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA. J. Mol. Biol. 364, 170–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. van der Lee, R. et al. Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell Rep. 8, 1832–1844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ragusa, M.J. et al. Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat. Struct. Mol. Biol. 17, 459–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Loris, R. & Garcia-Pino, A. Disorder- and dynamics-based regulatory mechanisms in toxin-antitoxin modules. Chem. Rev. 114, 6933–6947 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Magnuson, R. & Yarmolinsky, M.B. Corepression of the P1 addiction operon by Phd and Doc. J. Bacteriol. 180, 6342–6351 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Johnson, E.P., Strom, A.R. & Helinski, D.R. Plasmid RK2 toxin protein ParE: purification and interaction with the ParD antitoxin protein. J. Bacteriol. 178, 1420–1429 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Monti, M.C. et al. Interactions of Kid-Kis toxin-antitoxin complexes with the parD operator-promoter region of plasmid R1 are piloted by the Kis antitoxin and tuned by the stoichiometry of Kid-Kis oligomers. Nucleic Acids Res. 35, 1737–1749 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cataudella, I., Sneppen, K., Gerdes, K. & Mitarai, N. Conditional cooperativity of toxin-antitoxin regulation can mediate bistability between growth and dormancy. PLoS Comput. Biol. 9, e1003174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gelens, L., Hill, L., Vandervelde, A., Danckaert, J. & Loris, R. A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli. PLoS Comput. Biol. 9, e1003190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ruangprasert, A. et al. Mechanisms of toxin inhibition and transcriptional repression by Escherichia coli DinJ-YafQ. J. Biol. Chem. 289, 20559–20569 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brown, B.L., Wood, T.K., Peti, W. & Page, R. Structure of the Escherichia coli antitoxin MqsA (YgiT/b3021) bound to its gene promoter reveals extensive domain rearrangements and the specificity of transcriptional regulation. J. Biol. Chem. 286, 2285–2296 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Centers for Disease Control and Prevention. in Antibiotic/Antimicrobial Resistance Vol. http://www.cdc.gov/drugresistance/ (2015).

  93. Conlon, B.P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Barbosa, L.C. et al. Design and synthesis of peptides from bacterial ParE toxin as inhibitors of topoisomerases. Eur. J. Med. Chem. 54, 591–596 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Kamada, K. & Hanaoka, F. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol. Cell 19, 497–509 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Simanshu, D.K., Yamaguchi, Y., Park, J.H., Inouye, M. & Patel, D.J. Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol. Cell 52, 447–458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Butt, A. et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem. J. 459, 333–344 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Brown, B.L. & Page, R. Preliminary crystallographic analysis of the Escherichia coli antitoxin MqsA (YgiT/b3021) in complex with mqsRA promoter DNA. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 1060–1063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hargreaves, D. et al. Structural and functional analysis of the kid toxin protein from E. coli plasmid R1. Structure 10, 1425–1433 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Rao, F. et al. Co-evolution of quaternary organization and novel RNA tertiary interactions revealed in the crystal structure of a bacterial protein-RNA toxin-antitoxin system. Nucleic Acids Res. 43, 9529–9540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all current and previous members of the Page and Peti laboratories for their contributions to this ongoing research. The Peti and Page laboratories also thank all collaborators in the toxin-antitoxin field for their critical scientific input and generous support, especially T.K. Wood (Pennsylvania State University). Grant sponsors: US National Science Foundation, grant number MCB0952550, and a Brown University Deans Award to R.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Page.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Page, R., Peti, W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12, 208–214 (2016). https://doi.org/10.1038/nchembio.2044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2044

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology