Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent ultrafast lattice-directed reaction dynamics of triiodide anion photodissociation

Abstract

Solid-state reactions are influenced by the spatial arrangement of the reactants and the electrostatic environment of the lattice, which may enable lattice-directed chemical dynamics. Unlike the caging imposed by an inert matrix, an active lattice participates in the reaction, however, little evidence of such lattice participation has been gathered on ultrafast timescales due to the irreversibility of solid-state chemical systems. Here, by lowering the temperature to 80 K, we have been able to study the dissociative photochemistry of the triiodide anion (I3) in single-crystal tetra-n-butylammonium triiodide using broadband transient absorption spectroscopy. We identified the coherently formed tetraiodide radical anion (I4) as a reaction intermediate. Its delayed appearance after that of the primary photoproduct, diiodide radical I2, indicates that I4 was formed via a secondary reaction between a dissociated iodine radical (I) and an adjacent I3. This chemistry occurs as a result of the intermolecular interaction determined by the crystalline arrangement and is in stark contrast with previous solution studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal and electronic structures of I3.
Figure 2: Short-time dynamics and frequency analysis.
Figure 3: Evidence of I4•− formation.
Figure 4: Possible reaction mechanism of I3 in solid-state TBAT.

Similar content being viewed by others

References

  1. Nitzan, A. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems (Oxford Univ. Press, 2006).

    Google Scholar 

  2. Harris, A. L., Brown, J. K. & Harris, C. B. The nature of simple photodissociation reactions in liquids on ultrafast time scales. Annu. Rev. Phys. Chem. 39, 341–366 (1988).

    CAS  Google Scholar 

  3. Owrutsky, J. C., Raftery, D. & Hochstrasser, R. M. Vibrational relaxation dynamics in solutions. Annu. Rev. Phys. Chem. 45, 519–555 (1994).

    CAS  PubMed  Google Scholar 

  4. Elles, C. G. & Crim, F. F. Connecting chemical dynamics in gases and liquids. Annu. Rev. Phys. Chem. 57, 273–302 (2006).

    CAS  PubMed  Google Scholar 

  5. Carpenter, B. K., Harvey, J. N. & Orr-Ewing, A. J. The study of reactive intermediates in condensed phases. J. Am. Chem. Soc. 138, 4695–4705 (2016).

    CAS  PubMed  Google Scholar 

  6. Apkarian, V. A. & Schwentner, N. Molecular photodynamics in rare gas solids. Chem. Rev. 99, 1481–1514 (1999).

    CAS  PubMed  Google Scholar 

  7. Hoops, A. A., Gascooke, J. R., Faulhaber, A. E., Kautzman, K. E. & Neumark, D. M. Two- and three-body photodissociation of gas phase I3. J. Chem. Phys. 120, 7901–7909 (2004).

    CAS  PubMed  Google Scholar 

  8. Nakanishi, R. et al. Photodissociation of gas-phase I3: comprehensive understanding of nonadiabatic dissociation dynamics. J. Chem. Phys. 126, 204311 (2007).

    PubMed  Google Scholar 

  9. Banin, U. & Ruhman, S. Ultrafast photodissociation of I3. Coherent photochemistry in solution. J. Chem. Phys. 98, 4391–4403 (1993).

    CAS  Google Scholar 

  10. Kühne, T. & Vöhringer, P. Vibrational relaxation and geminate recombination in the femtosecond-photodissociation of triiodide in solution. J. Chem. Phys. 105, 10788–10802 (1996).

    Google Scholar 

  11. Poulin, P. R. Coherent Lattice and Molecular Dynamics in Ultrafast Single-Shot Spectroscopy (MIT, 2005).

    Google Scholar 

  12. Nishiyama, Y., Terazima, M. & Kimura, Y. Ultrafast relaxation and reaction of diiodide anion after photodissociation of triiodide in room-temperature ionic liquids. J. Phys. Chem. B 116, 9023–9032 (2012).

    CAS  PubMed  Google Scholar 

  13. Poulin, P. R. & Nelson, K. A. Irreversible organic crystalline chemistry monitored in real time. Science 313, 1756–1760 (2006).

    CAS  PubMed  Google Scholar 

  14. Gershgoren, E., Banin, U. & Ruhman, S. Caging and geminate recombination following photolysis of triiodide in solution. J. Phys. Chem. A 102, 9–16 (1998).

    CAS  Google Scholar 

  15. Johnson, A. E. & Myers, A. B. Solvent effects in the Raman spectra of the triiodide ion: observation of dynamic symmetry breaking and solvent degrees of freedom. J. Phys. Chem. 100, 7778–7788 (1996).

    CAS  Google Scholar 

  16. Kim, K. H. et al. Solvent-dependent molecular structure of ionic species directly measured by ultrafast X-ray solution scattering. Phys. Rev. Lett. 110, 165505 (2013).

    PubMed  Google Scholar 

  17. Svensson, P. H. & Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 103, 1649–1684 (2003).

    CAS  PubMed  Google Scholar 

  18. Gabes, W. & Gerding, H. Vibrational spectra and structures of the trihalide ions. J. Mol. Struct. 14, 267–279 (1972).

    CAS  Google Scholar 

  19. Zambounis, J. S., Kamitsos, E. I., Patsis, A. P. & Papavassiliou, G. C. Resonance Raman and far-infrared studies of n-Bu4NI3 and n-Bu4NBr3 . J. Raman Spectrosc. 23, 81–85 (1992).

    CAS  Google Scholar 

  20. Broude, V. L., Rashba, E. I. & Sheka, E. F. Spectroscopy of Molecular Excitons (Springer, 1985).

    Google Scholar 

  21. Baratz, A. & Ruhman, S. UV photolysis of I3 in solution — multiple product channels detected by transient hyperspectral probing. Chem. Phys. Lett. 461, 211–217 (2008).

    CAS  Google Scholar 

  22. Prokhorenko, V. I. Global analysis of multi-dimensional experimental data. Eur. Photochem. Assoc. Newsl. June, 21–23 (2012).

    Google Scholar 

  23. Stoica, P. & Moses, R. L. Spectral Analysis of Signals (Pearson Prentice Hall, 2005).

    Google Scholar 

  24. Kühne, T., Küster, R. & Vöhringer, P. Femtosecond photodissociation of triiodide in solution: excitation energy dependence and transition state dynamics. Chem. Phys. 233, 161–178 (1998).

    Google Scholar 

  25. Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way (Academic, 2008).

    Google Scholar 

  26. Brazard, J., Bizimana, L. A., Gellen, T., Carbery, W. P. & Turner, D. B. Experimental detection of branching at a conical intersection in a highly fluorescent molecule. J. Phys. Chem. Lett. 7, 14–19 (2016).

    CAS  PubMed  Google Scholar 

  27. Pollard, W. T. et al. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin. J. Phys. Chem. 96, 6147–6158 (1992).

    CAS  Google Scholar 

  28. Wang, Q., Schoenlein, R., Peteanu, L., Mathies, R. & Shank, C. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266, 422–424 (1994).

    CAS  PubMed  Google Scholar 

  29. de Violet, P. F. Polyhalide radical anions as intermediates in chemistry. Rev. Chem. Intermed. 4, 121–169 (1981).

    Google Scholar 

  30. Fornier de Violet, P., Bonneau, R. & Joussot-Dubien, J. Laser flash photolysis of iodine–iodide mixture in hydroxylic solvent. Evidence for the existence of the radical anion I4. Chem. Phys. Lett. 28, 569–572 (1974).

    CAS  Google Scholar 

  31. Shida, T., Takahashi, Y., Hatano, H. & Imamura, M. Electronic structures of I2 and I4 ions in γ-irradiated rigid solutions. Chem. Phys. Lett. 33, 491–494 (1975).

    CAS  Google Scholar 

  32. Johnson, P. J. M. et al. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 7, 980–986 (2015).

    CAS  PubMed  Google Scholar 

  33. Müller, M. et al. Anion–π interactions in salts with polyhalide anions: trapping of I42−. Chemistry 16, 12446–12453 (2010).

    PubMed  Google Scholar 

  34. Manca, G., Ienco, A. & Mealli, C. Factors controlling asymmetrization of the simplest linear I3 and I42– polyiodides with implications for the nature of halogen bonding. Cryst. Growth Des. 12, 1762–1771 (2012).

    CAS  Google Scholar 

  35. Tellinghuisen, J. Analysis of the visible absorption spectrum of I2 in inert solvents using a physical model. J. Phys. Chem. A 116, 391–398 (2012).

    CAS  PubMed  Google Scholar 

  36. Guo, Z., Molesky, B. P., Cheshire, T. P. & Moran, A. M. Elucidation of reactive wavepackets by two-dimensional resonance Raman spectroscopy. J. Chem. Phys. 143, 124202 (2015).

    PubMed  Google Scholar 

  37. Schwartz, B. J., King, J. C. & Harris, C. B. in Ultrafast Dynamics of Chemical Systems 235–248 (Springer Netherlands, 1994).

    Google Scholar 

  38. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1999).

    Google Scholar 

  39. Orr-Ewing, A. J. Perspective: bimolecular chemical reaction dynamics in liquids. J. Chem. Phys. 140, 90901 (2014).

    Google Scholar 

  40. Sherwood, P. M. A. Vibrational spectroscopy of solids (Cambridge Univ. Press, 1972).

    Google Scholar 

  41. Marino, A. et al. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: a molecule-to-lattice energy transfer. Struct. Dyn. 3, 23605 (2016).

    CAS  Google Scholar 

  42. Field, R., Liu, L. C., Gawelda, W., Lu, C. & Miller, R. J. D. Spectral signatures of ultrafast spin crossover in single crystal [FeII(bpy)3](PF6)2 . Chemistry 22, 5118–5122 (2016).

    CAS  PubMed  Google Scholar 

  43. Gühr, M. in Coherent Vibrational Dynamics (CRC Press, 2007).

    Google Scholar 

  44. Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action. Science 343, 1108–1116 (2014).

    CAS  PubMed  Google Scholar 

  45. Kirchner, F. O., Lahme, S., Riedle, E. & Baum, P. All-reflective UV-VIS-NIR transmission and fluorescence spectrometer for μm-sized samples. AIP Adv. 4, 77134 (2014).

    Google Scholar 

  46. Brotherton, W. S., Clark, R. J. & Zhu, L. Synthesis of 5-iodo-1,4-disubstituted-1,2,3-triazoles mediated by in situ generated copper(I) catalyst and electrophilic triiodide ion. J. Org. Chem. 77, 6443–6455 (2012).

    CAS  PubMed  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  48. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 73005 (2009).

    Google Scholar 

  49. Martin, J. M. L. & Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: the atoms Ga–Kr and In–Xe. J. Chem. Phys. 114, 3408–3420 (2001).

    CAS  Google Scholar 

  50. Groenewald, F., Esterhuysen, C. & Dillen, J. Extensive theoretical investigation: influence of the electrostatic environment on the I3···I3 anion–anion interaction. Theor. Chem. Acc. 131, 1281 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank A. G. Dijkstra and M. A. Kochman for helpful discussions, and D. S. Badali for contributions to the initial development of the transient absorption setup. This work was funded by the Max Planck Society with additional support from the Hamburg Centre for Ultrafast Imaging. G.C. acknowledges the support from the Alexander von Humboldt Foundation. D.M.R. and C.A.M. acknowledge the UK Car-Parrinello Consortium for allocation of computing time on the EPSRC high performance computing resource ARCHER (managed by the Edinburgh Parallel Computing Centre), the EaStCHEM Research Computing Facility and the University of Edinburgh ECDF facility.

Author information

Authors and Affiliations

Authors

Contributions

R.J.D.M. conceived the experiment. R.X. grew TBAT crystals and prepared samples for optical measurements; G.C. constructed and programmed the experimental setups and R.X. modified the setups for the current experiment; R.X. performed the measurements with contributions from G.C.; R.X. analysed and interpreted the data under the supervision of V.I.P and S.A.H.; D.M.R. and C.A.M. carried out the quantum chemical calculations and wrote the theory sections of the manuscript; R.X. wrote the manuscript with contributions from G.C. and V.I.P.; all authors contributed to editing the manuscript to its final form.

Corresponding author

Correspondence to R. J. Dwayne Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 12270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, R., Corthey, G., Rogers, D. et al. Coherent ultrafast lattice-directed reaction dynamics of triiodide anion photodissociation. Nature Chem 9, 516–522 (2017). https://doi.org/10.1038/nchem.2751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing