Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of a distinct water dimer inside fullerene C70

Abstract

The water dimer is an ideal chemical species with which to study hydrogen bonds. Owing to the equilibrium between the monomer and oligomer structure, however, selective generation and separation of a genuine water dimer has not yet been achieved. Here, we report a synthetic strategy that leads to the successful encapsulation of one or two water molecules inside fullerene C70. These endohedral C70 compounds offer the opportunity to study the intrinsic properties of a single water molecule without any hydrogen bonding, as well as an isolated water dimer with a single hydrogen bond between the two molecules. The unambiguously determined off-centre position of water in (H2O)2@C70 by X-ray diffraction provides insights into the formation of (H2O)2@C70. Subsequently, the 1H NMR spectroscopic measurements for (H2O)2@C70 confirmed the formation of a single hydrogen bond rapidly interchanging between the encapsulated water dimer. Our theoretical calculations revealed a peculiar cis-linear conformation of the dimer resulting from confinement effects inside C70.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of fullerene C60, C70 and their endohedral molecules.
Figure 2: Synthesis of open-cage C70 derivatives.
Figure 3: Synthesis of H2O@C70.
Figure 4: X-ray structure of the co-crystal of H2O@C70 and nickel(II) octaethylporphyrin with thermal ellipsoids set at the 50% level.
Figure 5: HPLC traces, APCI MS charts and 1H NMR spectra of a mixture of empty C70, H2O@C70 and (H2O)2@C70.
Figure 6: Computational studies of the water dimer encapsulated inside C70 and free dimer in the gas phase.

Similar content being viewed by others

References

  1. Keutsch, F. N. & Saykally, R. J. Water clusters: untangling the mysteries of the liquid, one molecule at a time. Proc. Natl Acad. Sci. USA 98, 10533–10540 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ludwig, R. Water: from clusters to the bulk. Angew. Chem. Int. Ed. 40, 1808–1827 (2001).

    Article  CAS  Google Scholar 

  3. Mukhopadhyay, A., Cole, W. T. S. & Saykally, R. J. Chem. Phys. Lett. 633, 13–26 (2015).

    Article  CAS  Google Scholar 

  4. Morokuma, K. & Pedersen, L. Molecular-orbital studies of hydrogen bonds. An ab initio calculation for dimeric H2O. J. Chem. Phys. 48, 3275–3282 (1968).

    Article  CAS  Google Scholar 

  5. Feller, D. Application of systematic sequences of wave functions to the water dimer. J. Chem. Phys. 96, 6104–6114 (1992).

    Article  CAS  Google Scholar 

  6. Xu, X. & Goddard III, W. A. Bonding properties of the water dimer: a comparative study of density functional theories. J. Phys. Chem. A 108, 2305–2313 (2004).

    Article  CAS  Google Scholar 

  7. Vaida, V. Perspective: water cluster mediated atmospheric chemistry. J. Chem. Phys. 135, 020901 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Tretyakov, M. Y., Serov, E. A., Koshelev, M. A., Parshin, V. V. & Krupnov, A. F. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature. Phys. Rev. Lett. 110, 093001 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. Ong, W. Q. et al. Encapsulation of conventional and unconventional water dimers by water-binding foldamers. Org. Lett. 13, 3194–3197 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Liang, J. et al. A 3D 12-ring zeolite with ordered 4-ring vacancies occupied by (H2O)2 dimers. Chem. Eur. J. 20, 16097–16101 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Buchanan, E. G. & Zwier, T. S. Binding water clusters to an aromatic-rich hydrophobic pocket: [2.2.2]paracyclophane–(H2O)n, n = 1–5. J. Phys. Chem. A 118, 8583–8596 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Yoshizawa, M. et al. Endohedral clusterization of ten water molecules into a ‘molecular ice’ within the hydrophobic pocket of a self-assembled cage. J. Am. Chem. Soc. 127, 2798–2799 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Maniwa, Y. et al. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nature Mater. 6, 135–141 (2007).

    Article  CAS  Google Scholar 

  14. Kurotobi, K. & Murata, Y. A single molecule of water encapsulated in fullerene C60 . Science 333, 613–616 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Akasaka, T. & Nagase, S. Endofullerenes: A New Family of Carbon Clusters (Kluwer Academic, 2002).

    Book  Google Scholar 

  16. Lu, X., Feng, L., Akasaka, T. & Nagase, S. Current status and future developments of endohedral metallofullerenes. Chem. Soc. Rev. 41, 7723–7760 (2012).

    Article  PubMed  Google Scholar 

  17. Murphy, T. A. et al. Observation of atomlike nitrogen in nitrogen-implanted solid C60 . Phys. Rev. Lett. 77, 1075 (1996).

    Article  CAS  Google Scholar 

  18. Aoyagi, S. et al. A layered ionic crystal of polar Li@C60 superatoms. Nature Chem. 2, 678–683 (2010).

    Article  CAS  Google Scholar 

  19. Nikawa, H. et al. The effect of atomic nitrogen on the C60 cage. Chem. Commun. 46, 631–633 (2010).

    Article  CAS  Google Scholar 

  20. Suetsuna, T. et al. Separation of N2@C60 and N@C60 . Chem. Eur. J. 8, 5079–5083 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Komatsu, K. & Murata, Y. A new route to an endohedral fullerene by way of σ-framework transformations. Chem. Lett. 34, 886–891 (2005).

    Article  CAS  Google Scholar 

  22. Murata, M., Murata, Y. & Komatsu, K. Surgery of fullerenes. Chem. Commun. 6083–6094 (2008).

  23. Murata, M., Murata, Y. & Komatsu, K. in Organic Nanomaterials (eds Torres, T. & Bottari, G.) 225–240 (Wiley-Blackwell, 2013).

    Book  Google Scholar 

  24. Komatsu, K., Murata, M. & Murata, Y. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307, 238–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Murata, M., Murata, Y. & Komatsu, K. Synthesis and properties of endohedral C60 encapsulating molecular hydrogen. J. Am. Chem. Soc. 128, 8024–8033 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Morinaka, Y., Tanabe, F., Murata, M., Murata, Y. & Komatsu, K. Rational synthesis, enrichment, and 13C NMR spectra of endohedral C60 and C70 encapsulating a helium atom. Chem. Commun. 46, 4532–4534 (2010).

    Article  CAS  Google Scholar 

  27. Khong, A. et al. An NMR study of He2 inside C70 . J. Am. Chem. Soc. 120, 6380–6383 (1998).

    Article  CAS  Google Scholar 

  28. Peres, T. et al. Some new diatomic molecule containing endohedral fullerenes. Int. J. Mass Spectrom. 210/211, 241–247 (2001).

    Article  Google Scholar 

  29. Morinaka, Y. et al. X-ray observation of a helium atom and placing a nitrogen atom inside He@C60 and He@C70 . Nature Commun. 4, 1554 (2013).

    Article  CAS  Google Scholar 

  30. Murata, Y., Maeda, S., Murata, M. & Komatsu, K. Encapsulation and dynamic behavior of two H2 molecules in an open-cage C70 . J. Am. Chem. Soc. 130, 6702–6703 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Murata, M., Maeda, S., Morinaka, Y., Murata, Y. & Komatsu, K. Synthesis and reaction of fullerene C70 encapsulating two molecules of H2 . J. Am. Chem. Soc. 130, 15800–15801 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Vougioukalakis, G. C., Roubelakis, M. M. & Orfanopoulos, M. Open-cage fullerenes: towards the construction of nanosized molecular containers. Chem. Soc. Rev. 39, 817–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Gan, L., Yang, D., Zhang, Q. & Huang, H. Preparation of open-cage fullerenes and incorporation of small molecules through their orifices. Adv. Mater. 22, 1498–1507 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Herrmann, A., Diederich, F., Thilgen, C., Meer, H. U. & Müller, W. H. Chemistry of the higher fullerenes: preparative isolation of C76 by HPLC and synthesis, separation, and characterization of Diels–Alder monoadducts of C70 and C76 . Helv. Chim. Acta 77, 1689–1704 (1994).

    Article  Google Scholar 

  35. Thilgen, C. & Diederich, F. Structural aspects of fullerene chemistry—a journey through fullerene chirality. Chem. Rev. 106, 5049–5135 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hirsch, A. & Brettreich, M. Fullerenes: Chemistry and Reactions (Wiley-VCH, 2005).

    Google Scholar 

  37. Williams, M., Tummala, N. R., Aziz, S. G., Risko, C. & Bŕedas, J.-L. Influence of molecular shape on solid-state packing in disordered PC61BM and PC71BM fullerenes. J. Phys. Chem. Lett. 5, 3427–3433 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, R., Futagoishi, T., Murata, M., Wakamiya, A. & Murata, Y. Synthesis and structure of an open-cage thiafullerene C69S: reactivity differences of an open-cage C70 tetraketone relative to its C60 analogue. J. Am. Chem. Soc. 136, 8193–8196 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Krachmalnicoff, A., Levitt, M. H. & Whitby, R. J. An optimized scalable synthesis of H2O@C60 and a new synthesis of H2@C60 . Chem. Commun. 50, 13037–13040 (2014).

    Article  CAS  Google Scholar 

  40. Olmstead, M. M. et al. Interaction of curved and flat molecular surfaces. The structure of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J. Am. Chem. Soc. 121, 7090–7097 (1999).

    Article  CAS  Google Scholar 

  41. Frisch, M. J. et al. GAUSSIAN 09 (Gaussian, Inc., 2010).

    Google Scholar 

  42. Chung, L. et al. The ONIOM method and its applications. Chem. Rev. 115, 5678–5796 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Cheeseman, J. R., Trucks, G. W., Keith, T. A. & Frisch, M. J. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 104, 5497–5509 (1996).

    Article  CAS  Google Scholar 

  44. Holzapfel, W. & Drickamer, H. G. Effect of pressure on the volume of the high-pressure (VII) phase of H2O and D2O. J. Chem. Phys. 48, 4798–4800 (1968).

    Article  CAS  Google Scholar 

  45. Isaacs, E. D. et al. Covalency of the hydrogen bond in ice: a direct X-ray measurement. Phys. Rev. Lett. 82, 600–603 (1999).

    Article  CAS  Google Scholar 

  46. Sartori, E. et al. Nuclear relaxation of H2 and H2@C60 in organic solvents. J. Am. Chem. Soc. 128, 14752–14753 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Y. et al. Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. J. Phys. Chem. Lett. 3, 1165–1168 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Lang, E. & Lüdemann, H.-D. Pressure and temperature dependence of the longitudinal proton relaxation times in supercooled water to –87 °C and 2500 bar. J. Chem. Phys. 67, 718–723 (1977).

    Article  CAS  Google Scholar 

  49. Masutani, K. & Ochiai, S. in Introduction to Experimental Infrared Spectroscopy: Fundamentals and Practical Methods (ed. Tasumi, M.) 141–152 (Wiley, 2015).

    Google Scholar 

  50. Refson, K. & Parker, S. F. Assignment of the internal vibrational modes of C70 by inelastic neutron scattering spectroscopy and periodic DFT. ChemistryOpen 4, 620–625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uhlik, F. et al. Water-dimer stability and its fullerene encapsulations. J. Comp. Theor. Nano. 12, 959–964 (2015).

    Article  Google Scholar 

  52. Kayal, A. & Chandra, A. Exploring the structure and dynamics of nano-confined water molecules using molecular dynamics simulations. Mol. Simul. 41, 463–470 (2015).

    Article  CAS  Google Scholar 

  53. Nomura, K. & Okada, S. An anomalous dipole–dipole arrangement of water molecules encapsulated into C60 dimer. Chem. Phys. Lett. 608, 351–354 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was partially provided by the PRESTO programme on ‘Molecular Technology and Creation of New Functions’ from the JST, the JSPS KAKENHI (grant no. 23241032 and 15K13641) and Grant-in-Aids for Scientific Research on Innovative Areas ‘π-System Figuration: Control of Electron and Structural Dynamism for Innovative Functions’ and ‘Stimuli-responsive Chemical Species for the Creation of Functional Molecules’ from the MEXT, Japan. NMR measurements were supported by the Joint Usage/Research Center (JURC) at the ICR, Kyoto University. The authors thank T. Futagoishi, O. Tomita, H. Kunioku, R. Abe, Y. Kitazumi and K. Kano for support with X-ray and infrared measurements.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. conceived and designed the projects. R.Z. carried out most of the experimental works and theoretical calculations, and wrote the paper supported by M.M., T.A. and A.W. T.S. and T.H. performed the infrared measurements.

Corresponding author

Correspondence to Yasujiro Murata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11942 kb)

Supplementary information

Crystallographic data for compound H2O@C70. (CIF 61 kb)

Supplementary information

Structure factors file for compound H2O@C70. (FCF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Murata, M., Aharen, T. et al. Synthesis of a distinct water dimer inside fullerene C70. Nature Chem 8, 435–441 (2016). https://doi.org/10.1038/nchem.2464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing