Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hybrid insulin cocrystals for controlled release delivery

Abstract

The ability to tailor the release profile of a drug by manipulating its formulation matrix offers important therapeutic advantages. We show here that human insulin can be cocrystallized at preselected ratios with the fully active lipophilically modified insulin derivative octanoyl-Nε-LysB29–human insulin (C8-HI). The cocrystal is analogous to the NPH (neutral protamine Hagedorn) crystalline complex formed with human insulin, which is commonly used as the long-acting insulin component of diabetes therapy. The in vitro and in vivo release rates of the cocrystal can be controlled by adjusting the relative proportions of the two insulin components. We identified a cocrystal composition comprising 75% C8-HI and 25% human insulin that exhibits near-ideal basal pharmacodynamics in somatostatin-treated beagle dogs. The dependence of release rate on cocrystal ratio provides a robust mechanism for modulating insulin pharmacodynamics. These findings show that a crystalline protein matrix may accommodate a chemical modification that alters the dissolution rate of the crystal in a therapeutically useful way, yet that is structurally innocuous enough to preserve the pharmaceutical integrity of the original microcrystalline entity and the pharmacological activity of the parent molecule.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of cocrystal formation.
Figure 2: Environmental scanning electron microscope (ESEM) images.
Figure 3: In vitro dissolution curves showing the relationship between the C8-HI content of the cocrystal and dissolution rate.
Figure 4: In vitro dissolution homogeneity.
Figure 5: Time-action profiles of insulin formulations administered to somatostatin-treated dogs by subcutaneous injection.
Figure 6: Pharmacokinetics and glucodynamics of 75% C8-HI cocrystal and NPH in somatostatin-treated dogs (2 nmol/kg, subcutaneous, n = 6; values represent mean ± s.e.m.).

Similar content being viewed by others

References

  1. Langer, R. New methods of drug delivery. Science 249, 1527–1532 (1990).

    Article  CAS  Google Scholar 

  2. Putney, S.D. & Burke, P.A. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16, 153–157 (1998).

    Article  CAS  Google Scholar 

  3. Banerjee, P.S., Hosny, E.A. & Robinson, J.R. Parenteral delivery of peptide and protein drugs. in Peptide and Protein Delivery, Vol. 4 (ed. Lee, V.H.L.) 487–543 (Marcel Dekker, Los Angeles, 1991).

    Google Scholar 

  4. Shah, V.P., Skelly, J.P., Barr, W.H., Malinowski, H. & Amidon, G. Scale-up of controlled release products—preliminary considerations. Pharm. Technol. 5, 35–40 (1992).

    Google Scholar 

  5. Hagedorn, H.C., Jensen, B.N., Krarup, N.B. & Wodstrup, I. Protamine insulinate. JAMA 106, 177–180 (1936).

    Article  CAS  Google Scholar 

  6. Felig, P. Hagedorn's pioneering contribution to drug delivery in the management of diabetes. JAMA 251, 393–396 (1984).

    Article  CAS  Google Scholar 

  7. Krayenbühl, C. & Rosenberg, T. Crystalline protamine insulin. Rep. Steno. Mem. Hosp. Nord. Insulinlab 1, 60–73 (1946).

    Google Scholar 

  8. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  9. Ohkubo, Y. et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized, prospective 6-year study. Diabetes Res. Clin. Pract. 28, 103–117 (1995).

    Article  CAS  Google Scholar 

  10. Galloway, J.A. & Chance, R.E. Improving insulin therapy: achievements and challenges. Horm. Met. Res. 26, 591–598 (1994).

    Article  CAS  Google Scholar 

  11. Owens, D.R., Zinman, B. & Bolli, G.B. Insulins today and beyond. Lancet 358, 739–746 (2001).

    Article  CAS  Google Scholar 

  12. DeFelippis, M.R. et al. Preparation and characterization of a cocrystalline suspension of [LysB28,-ProB29]-human insulin analog. J. Pharm. Sci. 87, 170–176 (1998).

    Article  CAS  Google Scholar 

  13. Baker, E.N. et al. The structure of 2Zn pig insulin crystals at 1.5Å resolution. Philos. Trans. R. Soc. Lond. B 319, 369–456 (1988).

    Google Scholar 

  14. Balschmidt, P., Benned-Hansen, F., Dodson, E.J., Dodson, G.G. & Korber, F. Structure of porcine insulin cocrystallized with clupeine-Z. Acta Crystallogr. B47, 975–986 (1991).

    Article  CAS  Google Scholar 

  15. Brader, M.L. et al. Effects of surface hydrophobicity on the structural properties of insulin. in Techniques in Protein Chemistry VIII (ed. Marshak, D.R.) 289–297 (Academic Press, San Diego, CA, 1997).

    Chapter  Google Scholar 

  16. Whittingham, J.L., Havelund, S. & Jonassen, I. Crystal structure of a prolonged-acting insulin with albumin-binding properties. Biochemistry 36, 2826–2831 (1997).

    Article  CAS  Google Scholar 

  17. Markussen, J. et al. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 39, 281–288 (1996).

    Article  CAS  Google Scholar 

  18. Myers, S.R. et al. Acylation of human insulin with palmitic acid extends the time-action of human insulin in diabetic dogs. Diabetes 46, 637–642 (1997).

    Article  CAS  Google Scholar 

  19. Hamilton-Wessler, M. et al. Mechanism of protracted metabolic effects of fatty acid acylated insulin, NN304, in dogs: retention of NN304 by albumin. Diabetologia 42, 1254–1263 (1999).

    Article  CAS  Google Scholar 

  20. Radziuk, J. et al. Basal activity profiles of NPH and [Nε-palmitoyl Lys (B29)] human insulins in subjects with IDDM. Diabetologia 41, 116–120 (1998) [erratum (1998) 41, 489].

    Article  CAS  Google Scholar 

  21. Heinemann, L. et al. Time-action profile of the soluble, fatty acid acylated, long-acting insulin analogue NN304. Diabetes Med. 16, 332–338 (1999).

    Article  CAS  Google Scholar 

  22. Kurtzhals, P. et al. Albumin-binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem. J. 312, 725–731 (1995).

    Article  CAS  Google Scholar 

  23. Katsoyannis, P.G. The chemical synthesis of insulin and the pursuit of structure-activity relationships. in Structural Studies on Molecules of Biological Interest (eds. Dodson, G.G., Glusker, J.P. & Sayre, D.) 454–486 (Clarendon Press, Oxford, 1981).

    Google Scholar 

  24. Abel, J.J. Crystalline insulin. Proc. Natl. Acad. Sci. USA 12, 132–135 (1926).

    Article  CAS  Google Scholar 

  25. Baker, E.N. & Dodson, G.G. X-ray diffraction data on some crystalline varieties of insulin. J. Mol. Biol. 54, 605–609 (1970).

    Article  CAS  Google Scholar 

  26. Whittingham, J.L., Chaudhuri, S., Dodson, E.J., Moody, P.C.E. & Dodson, G.G. X-ray crystallographic studies on some hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben, and phenol. Biochemistry 34, 15553–15563 (1995).

    Article  CAS  Google Scholar 

  27. Derewenda, U. et al. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature 338, 594–596 (1989).

    Article  CAS  Google Scholar 

  28. Brange, J et al. Galenics of Insulin (Springer, Berlin Heidelberg, 1987).

    Book  Google Scholar 

  29. DeFelippis, M.R. & Akers, M.J. Peptides and proteins as parenteral suspensions: an overview of design, development, and manufacturing considerations. in Pharmaceutical Formulation Development of Peptides and Proteins (eds Frokjaer, S. & Hovgaard, L.) 113–144 (Taylor and Francis, Philadelphia, 2000).

    Google Scholar 

  30. MacPherson, A. Crystallization of Biological Macromolecules (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  31. Brems, D.N. et al. Altering the association properties of insulin by amino acid replacement. Protein Eng. 5, 527–533 (1992).

    Article  CAS  Google Scholar 

  32. Yip, C.M., DeFelippis, M.R., Frank, B.F., Brader, M.L. & Ward, M.D. Structural and morphological characterization of ultralente insulin crystals by atomic force microscopy: evidence of hydrophobically driven assembly. Biophys. J. 75, 1172–1179 (1998).

    Article  CAS  Google Scholar 

  33. Ribel, U., Jørgensen, K., Brange, J. & Henriksen, U. The pig as a model for subcutaneous insulin absorption in man. in Diabetes (eds Serrano-Rios, M. & Lefebvre, P.J.) 891–896 (Elsevier Science, Amsterdam, 1985).

    Google Scholar 

  34. Steiner, D.F. Cocrystallization of proinsulin with insulin. Nature 243, 528–530 (1973).

    Article  CAS  Google Scholar 

  35. Hassiepen, U., Federwisch, M., Mülders, T. & Wollmer, A. The lifetime of insulin hexamers. Biophys. J. 77, 1638–1654 (1999).

    Article  CAS  Google Scholar 

  36. Jen, A. & Merkle, H.P. Diamonds in the rough: protein crystals from a formulation perspective. Pharm. Res. 18, 1483–1488 (2001).

    Article  CAS  Google Scholar 

  37. Stevens, R.C. High-throughput protein crystallization. Curr. Opin. Struct. Biol. 10, 558–563 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark L. Brader or Sharon R. Myers.

Ethics declarations

Competing interests

The authors are employees of Eli Lilly and Company, which manufactures and sells insulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brader, M., Sukumar, M., Pekar, A. et al. Hybrid insulin cocrystals for controlled release delivery. Nat Biotechnol 20, 800–804 (2002). https://doi.org/10.1038/nbt722

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt722

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing