Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3

Abstract

Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere1. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents1,2, whereas iodine oxide vapours have been implicated in particle formation over coastal regions3,4,5,6,7. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems2,8,9,10, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported11. Here we present field data from Mace Head, Ireland, and supporting data from northern Greenland and Queen Maud Land, Antarctica, that enable us to identify the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours, with average oxygen-to-iodine ratios of 2.4 found in the clusters. On the basis of this high ratio, together with the high concentrations of iodic acid (HIO3) observed, we suggest that cluster formation primarily proceeds by sequential addition of HIO3, followed by intracluster restructuring to I2O5 and recycling of water either in the atmosphere or on dehydration. Our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine-containing species in the formation of new aerosol particles3,4,5,6,7,12,13,14,15,16,17,18, and identifies the key nucleating compound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A typical particle formation event recorded at Mace Head.
Figure 2: Plot of mass defect versus cluster mass depicting the abundance and atomic composition of nucleating neutral clusters during the event.
Figure 3: Cluster concentration versus HIO3 concentration.

Similar content being viewed by others

References

  1. Kulmala, M. et al. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu. Rev. Phys. Chem. 65, 21–37 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Riccobono, F. et al. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 344, 717–721 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. O’Dowd, C. D. et al. Marine aerosol formation from biogenic iodine emissions. Nature 417, 632–636 (2002)

    Article  ADS  PubMed  Google Scholar 

  4. Yoon, Y. J., O’Dowd, C. D., Jennings, S. G. & Lee, S. H. Statistical characteristics and predictability of particle formation events in Mace Head. J. Geophys. Res. 111, D13204 (2006)

    Article  ADS  Google Scholar 

  5. O’Dowd, C. D. & de Leeuw, G. Marine aerosol production: a review of the current knowledge. Phil. Trans. R. Soc. A 365, 1753–1774 (2007)

    Article  ADS  PubMed  Google Scholar 

  6. McFiggans, G. et al. Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study. Atmos. Chem. Phys. 10, 2975–2999 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Mahajan, A. S. et al. Concurrent observations of atomic iodine, molecular iodine and ultrafine particles in a coastal environment. Atmos. Chem. Phys. 11, 2545–2555 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Kirkby, J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429–433 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kürten, A. et al. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions. Proc. Natl Acad. Sci. USA 111, 15019–15024 (2014)

    Article  ADS  PubMed  Google Scholar 

  10. Kirkby, J. et al. Ion-induced nucleation of pure biogenic particles. Nature 533, 521–526 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kulmala, M. et al. Direct observations of atmospheric aerosol nucleation. Science 339, 943–946 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hoffman, T., O’Dowd, C. D. & Seinfeld, J. H. Iodine oxide homogeneous nucleation: an explanation for coastal new particle production. Geophys. Res. Lett. 28, 1949–1952 (2001)

    Article  ADS  Google Scholar 

  13. Jimenez, J. L. et al. New particle formation from photooxidation of diiodomethane (CH2I2). J. Geophys. Res. 108, 4318 (2003)

    Article  Google Scholar 

  14. McFiggans, G. et al. Direct evidence for coastal iodine particles from Laminaria macroalgae: linkage to emissions of molecular iodine. Atmos. Chem. Phys. 4, 701–713 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Saiz-Lopez, A. & Plane, J. M. C. Novel iodine chemistry in the marine boundary layer. Geophys. Res. Lett. 31, L04112 (2004)

    ADS  Google Scholar 

  16. Saunders, R. W. & Plane, J. M. C. Formation pathways and composition of iodine oxide ultra-fine particles. Environ. Chem. 2, 299–303 (2005)

    Article  CAS  Google Scholar 

  17. Saunders, R. W. et al. Studies of the formation and growth of aerosol from molecular iodine precursor. Z. Phys. Chem. 224, 1095–1117 (2010)

    Article  CAS  Google Scholar 

  18. Ehn, M. et al. Growth rates during coastal and marine new particle formation in western Ireland. J. Geophys. Res. 115, D18218 (2010)

    Article  ADS  Google Scholar 

  19. Huang, R.-J. et al. In situ measurements of molecular iodine in the marine boundary layer: the link to macroalgae and the implications for O3, IO, OIO and NOx . Atmos. Chem. Phys. 10, 4823–4833 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Alicke, B., Hebestreit, K., Stutz, J. & Platt, U. Iodine oxide in the marine boundary layer. Nature 397, 572–573 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Atkinson, R. et al. Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement VIII: halogen species evaluation for atmospheric chemistry. J. Phys. Ref. Data 29, 167–266 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Bloss, W. J., Rowley, D. M., Cox, R. A. & Jones, R. L. Kinetics and products of the IO self-reaction. J. Phys. Chem. A 105, 7840–7854 (2001)

    Article  CAS  Google Scholar 

  23. Sunder, S. & Vikis, A. C. Raman spectra of iodine oxyacids produced by the gas-phase reaction of iodine with ozone in the presence of water vapour. Can. J. Spectros. 32, 45–48 (1987)

    CAS  Google Scholar 

  24. O’Dowd, C. D. On the spatial extent and evolution of coastal aerosol plumes. J. Geophys. Res. 107, (2002)

  25. Ehn, M. et al. A large source of low-volatility secondary organic aerosol. Nature 506, 476–479 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Saiz-Lopez, A. et al. Atmospheric chemistry of iodine. Chem. Rev. 112, 1773–1804 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. Mahajan, A. S. et al. Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean. Atmos. Chem. Phys. 10, 4611–4624 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Lawler, M. J., Mahajan, A. S., Saiz-Lopez, A. & Saltzman, E. S. Observations of I2 at a remote marine site. Atmos. Chem. Phys. 14, 2669–2678 (2014)

    Article  ADS  Google Scholar 

  29. Saiz-Lopez, A. et al. On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime. Atmos. Chem. Phys. 8, 887–900 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Mahajan, A. S. et al. Evidence of reactive iodine chemistry in the Arctic boundary layer. J. Geophys. Res. 115, D20303 (2010)

    Article  ADS  Google Scholar 

  31. Atkinson, H. M. et al. Iodine emissions from the sea ice of the Weddell Sea. Atmos. Chem. Phys. 12, 11229–11244 (2012)

    Article  ADS  CAS  Google Scholar 

  32. Allan, J. et al. Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA. Atmos. Chem. Phys. 15, 5599–5609 (2015)

    Article  ADS  CAS  Google Scholar 

  33. Roscoe, H. K. Particles and iodine compounds in coastal Antarctica. J. Geophys. Res. 120, 7144–7156 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the Academy of Finland (Centre of Excellence Project 1118615 and Projects 251427 and 266388), the PEGASOS project (funded by the European Commission under the Framework Program 7 (FP7-ENV-2010-265148)), ACTRIS, the EPA-Ireland, the Nordic Centre of Excellence (CRAICC), the Finnish Antarctic Research Program and the European Research Council (ATMNUCLE grant 227463, MOCAPAF grant 257360 and COALA grant 638703).

Author information

Authors and Affiliations

Authors

Contributions

M.S., N.S., T.J., S.R., J.Ka., A.F. and O.P. performed the field measurements. M.S., N.S., T.J., J.Ko. and H.J. analysed the data. H.H. suggested the chemical mechanism and performed quantum chemical calculations. S.R., T.B. and M.S. performed the laboratory experiments. M.S., V.M.K. and C.O. wrote the manuscript. M.S., M.K., H.J. and C.O. designed the measurements. D.C. and C.O. organized the field study at Mace Head and contributed to the data analysis. All authors contributed to data interpretation and to the development of the final manuscript.

Corresponding author

Correspondence to Mikko Sipilä.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

TofTools for Matlab used for processing the mass spectrometer data is available upon request from the corresponding author.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Tables 1-2, Supplementary References and Supplementary Figures 1-15. (PDF 8185 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipilä, M., Sarnela, N., Jokinen, T. et al. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature 537, 532–534 (2016). https://doi.org/10.1038/nature19314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19314

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing