Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Embracing the quantum limit in silicon computing

Abstract

Quantum computers hold the promise of massive performance enhancements across a range of applications, from cryptography and databases to revolutionary scientific simulation tools. Such computers would make use of the same quantum mechanical phenomena that pose limitations on the continued shrinking of conventional information processing devices. Many of the key requirements for quantum computing differ markedly from those of conventional computers. However, silicon, which plays a central part in conventional information processing, has many properties that make it a superb platform around which to build a quantum computer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical versus quantum information.
Figure 2: Fundamental building blocks of silicon-based qubits.
Figure 3: Information lifetimes for various spins in silicon.
Figure 4: Controlling and manipulating spins.
Figure 5: Spin read-out of quantum dots and donors.

Similar content being viewed by others

References

  1. Lansbergen, G. P. et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nature Phys. 4, 656–661 (2008).

    Article  CAS  Google Scholar 

  2. Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high purity silicon. Nature Mater. (in the press); preprint at 〈http://arxiv.org/abs/1105.3772v1〉 (2011). This article reports the longest coherence time of any electron spin in the solid state; this was shown by donor electrons in silicon, with a T 2 of more than 10 s.

  6. Steane, A. M. Efficient fault-tolerant quantum computing. Nature 399, 124–126 (1999).

    Article  CAS  ADS  Google Scholar 

  7. Andreas, B. et al. Determination of the Avogadro constant by counting the atoms in a 28Si crystal. Phys. Rev. Lett. 106, 030801 (2011).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Feher, G. Electron spin resonance experiments on donors in silicon. Phys. Rev. 114, 1219–1244 (1959). This article reports on a seminal study that investigated a wide range of spin properties of donors in silicon.

    Article  CAS  ADS  Google Scholar 

  9. Gordon, J. & Bowers, K. Microwave spin echoes from donor electrons in silicon. Phys. Rev. Lett. 1, 368–370 (1958).

    Article  CAS  ADS  Google Scholar 

  10. Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).

    Article  ADS  CAS  Google Scholar 

  11. Abe, E. et al. Electron spin coherence of phosphorus donors in silicon: effect of environmental nuclei. Phys. Rev. B 82, 121201 (2010).

    Article  ADS  CAS  Google Scholar 

  12. Tyryshkin, A. M., Lyon, S. A., Astashkin, A. V. & Raitsimring, A. M. Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003).

    Article  ADS  CAS  Google Scholar 

  13. Schenkel, T. et al. Electrical activation and electron spin coherence of ultra-low dose antimony implants in silicon. Appl. Phys. Lett. 88, 112101 (2005).

    Article  ADS  CAS  Google Scholar 

  14. Tyryshkin, A. M., Lyon, S. A., Jantsch, W. & Schäffler, F. Spin manipulation of free two-dimensional electrons in Si/SiGe quantum wells. Phys. Rev. Lett. 94, 126802 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Matsunami, J., Ooya, M. & Okamoto, T. Electrically detected electron spin resonance in a high-mobility silicon quantum well. Phys. Rev. Lett. 97, 066602 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Wilamowski, Z., Malissa, H., Schaeffler, F. & Jantsch, W. g-Factor tuning and manipulation of spins by an electric current. Phys. Rev. Lett. 98, 187203 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Shankar, S., Tyryshkin, A. M., He, J. & Lyon, S. A. Spin relaxation and coherence times for electrons at the Si/SiO2 interface. Phys. Rev. B 82, 195323 (2010).

    Article  ADS  CAS  Google Scholar 

  19. Xiao, M., House, M. G. & Jiang, H. W. Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 104, 096801 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Hayes, R. R. et al. Lifetime measurements (T 1) of electron spins in Si/SiGe quantum dots. Preprint at 〈http://arxiv.org/abs/0908.0173〉 (2009). References 19 and 20 report measurements of T 1 in spin qubits in Si/SiO 2 and Si/SiGe quantum dots.

  21. Simmons, C. B. et al. Tunable spin loading and T 1 of a silicon spin qubit measured by single-shot readout. Phys. Rev. Lett. 106, 156804 (2011). This article was the first report of a single-shot spin read-out of a quantum-dot spin qubit in silicon, which was carried out in Si/SiGe.

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Schweiger, A. & Jeschke, G. Principles of pulse electron paramagnetic resonance (Oxford Univ. Press, 2001).

  24. Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).

    Article  CAS  ADS  MathSciNet  MATH  Google Scholar 

  25. Morton, J. J. L. A silicon-based cluster state quantum computer. Preprint at 〈http://arxiv.org/abs/0905.4008〉 (2010).

  26. Pioro-Ladrière, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nature Phys. 4, 776–779 (2008).

    Article  ADS  CAS  Google Scholar 

  27. Bradbury, F. R. et al. Stark tuning of donor electron spins in silicon. Phys. Rev. Lett. 97, 176404 (2006).

    Article  CAS  ADS  PubMed  Google Scholar 

  28. Dreher, L. et al. Electroelastic hyperfine tuning of phosphorus donors in silicon. Phys. Rev. Lett. 106, 037601 (2011).

    Article  CAS  ADS  PubMed  Google Scholar 

  29. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  ADS  PubMed  Google Scholar 

  30. Schmidt, J. & Solomon, I. Modulation of the photoconductivity in silicon at low temperatures by electron magnetic resonance of shallow impurities. C. R. Acad. Sci. III 263, 169–172 (1966).

    CAS  Google Scholar 

  31. McCamey, D. R. et al. Electrically detected magnetic resonance in ion-implanted Si:P nanostructures. Appl. Phys. Lett. 89, 182115 (2006).

    Article  ADS  CAS  Google Scholar 

  32. Stegner, A. R. et al. Electrical detection of coherent 31P spin quantum states. Nature Phys. 2, 835–838 (2006).

    Article  CAS  ADS  Google Scholar 

  33. Morley, G. W. et al. Long-lived spin coherence in silicon with an electrical spin trap readout. Phys. Rev. Lett. 101, 207602 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  34. Boehme, C. & Lips, K. Spin-dependent recombination — an electronic readout mechanism for solid state quantum computers. Phys. Status Solidi B 233, 427 (2002).

    Article  CAS  ADS  Google Scholar 

  35. Lo, C. C., Bokor, J., Schenkel, T., Tyryshkin, A. M. & Lyon, S. A. Spin-dependent scattering off neutral antimony donors in 28Si field-effect transistors. Appl. Phys. Lett. 91, 242106 (2007).

    Article  ADS  CAS  Google Scholar 

  36. Willems van Beveren, L. H. et al. Broadband electrically detected magnetic resonance of phosphorus donors in a silicon field-effect transistor. Appl. Phys. Lett. 93, 072102 (2008).

    Article  ADS  CAS  Google Scholar 

  37. Lo, C. C. et al. Electrically detected magnetic resonance of neutral donors interacting with a two-dimensional electron gas. Phys. Rev. Lett. 106, 207601 (2011).

    Article  CAS  ADS  PubMed  Google Scholar 

  38. Xiao, M., Martin, I., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004).

    Article  CAS  ADS  PubMed  Google Scholar 

  39. Steger, M. et al. Optically detected NMR of optically hyperpolarized 31P neutral donors in 28Si. J. Appl. Phys. 109, 102411 (2011).

    Article  ADS  CAS  Google Scholar 

  40. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Morello, A. et al. Architecture for high-sensitivity single-shot readout and control of the electron spin of individual donors in silicon. Phys. Rev. B 80, 081307 (2009).

    Article  ADS  CAS  Google Scholar 

  42. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010). This article was the first report of a single-shot spin read-out of a single donor electron in silicon.

    Article  CAS  ADS  PubMed  Google Scholar 

  43. Tahan, C., Friesen, M. & Joynt, R. Decoherence of electron spin qubits in Si-based quantum computers. Phys. Rev. B 66, 035314 (2002).

    Article  ADS  CAS  Google Scholar 

  44. Levy, J. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  45. Shaji, N. et al. Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nature Phys. 4, 540–544 (2008).

    Article  CAS  Google Scholar 

  46. Liu, H. W. et al. Pauli-spin-blockade transport through a silicon double quantum dot. Phys. Rev. B 77, 073310 (2008).

    Article  ADS  CAS  Google Scholar 

  47. Lansbergen, G. P. et al. Lifetime-enhanced transport in silicon due to spin and valley blockade. Phys. Rev. Lett. 107, 136602 (2011).

    Article  CAS  ADS  PubMed  Google Scholar 

  48. Morton, J. J. & Lovett, B. W. Hybrid solid-state qubits: the powerful role of electron spins. Annu. Rev. Condens. Matter Phys. 2, 189–212 (2011).

    Article  ADS  Google Scholar 

  49. Ladd, T. D., Maryenko, D., Yamamoto, Y., Abe, E. & Itoh, K. M. Coherence time of decoupled nuclear spins in silicon. Phys. Rev. B 71, 014401 (2005).

    Article  ADS  CAS  Google Scholar 

  50. Witzel, W. M. & Das Sarma, S. Nuclear spins as quantum memory in semiconductor nanostructures. Phys. Rev. B 76, 045218 (2007).

    Article  ADS  CAS  Google Scholar 

  51. Morton, J. J. L. et al. Solid state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008). This article reports the coherent transfer of quantum information between a donor electron spin and a coupled 31P nuclear spin, yielding a nuclear T 2 of more than 1 s.

    Article  CAS  ADS  Google Scholar 

  52. George, R. E. et al. Electron spin coherence and electron nuclear double resonance of Bi donors in natural Si. Phys. Rev. Lett. 105, 067601 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. McCamey, D. R., van Tol, J., Morley, G. W. & Boehme, C. Fast nuclear spin hyperpolarization of phosphorus in silicon. Phys. Rev. Lett. 102, 027601 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  54. Yang, A. et al. Simultaneous subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. Phys. Rev. Lett. 102, 1–4 (2009).

    Google Scholar 

  55. Simmons, S. et al. Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011).

    Article  CAS  ADS  PubMed  Google Scholar 

  56. Sarovar, M., Young, K. C., Schenkel, T. & Whaley, K. B. Quantum nondemolition measurements of single donor spins in semiconductors. Phys. Rev. B 78, 245302 (2008).

    Article  ADS  CAS  Google Scholar 

  57. McCamey, D. R., van Tol, J., Morley, G. W. & Boehme, C. Electronic spin storage in an electrically readable nuclear spin memory with a lifetime >100 seconds. Science 330, 1652–1656 (2010). This study demonstrated electrical read-out of both 31P and 29Si nuclear spin states in silicon, using the hyperfine interaction with donor electrons.

    Article  CAS  ADS  PubMed  Google Scholar 

  58. Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  59. DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  60. Wu, H. et al. Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Schuster, D. I. et al. High cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  62. Kubo, Y. et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  63. Zhu, X. et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011).

    Article  CAS  ADS  PubMed  Google Scholar 

  64. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  65. Nordberg, E. P. et al. Enhancement-mode double-top-gated metal-oxide-semiconductor nanostructures with tunable lateral geometry. Phys. Rev. B 80, 115331 (2009).

    Article  ADS  CAS  Google Scholar 

  66. Lu, T. M., Tsui, D. C., Lee, C.-H. & Liu, C. W. Observation of two-dimensional electron gas in a Si quantum well with mobility of 1.6 × 106 cm2/Vs. Appl. Phys. Lett. 94, 182102 (2009).

    Article  ADS  CAS  Google Scholar 

  67. Schofield, S. et al. Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104 (2003). This article describes the atomically precise placement of phosphorus donors in silicon, using the tip of a scanning tunnelling microscope.

    Article  CAS  ADS  PubMed  Google Scholar 

  68. Pierre, M. et al. Compact silicon double and triple dots realized with only two gates. Appl. Phys. Lett. 95, 242107 (2009).

    Article  ADS  CAS  Google Scholar 

  69. Oskin, M., Chong, F. T., Chuang, I. L. & Kubiatowicz, J. Building quantum wires: the long and the short of it. Proc. Int. Symp. Comput. Architect. 374–385 (ISCA, 2003).

    Google Scholar 

  70. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  ADS  Google Scholar 

  71. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). References 70 and 71 were the first proposals of realistic architectures for implementing quantum information processing using donors and quantum dots in silicon.

    Article  CAS  ADS  Google Scholar 

  72. Skinner, A., Davenport, M. & Kane, B. Hydrogenic spin quantum computing in silicon: a digital approach. Phys. Rev. Lett. 90, 87901 (2003).

    Article  CAS  ADS  Google Scholar 

  73. Haran, B. et al. 22 nm technology compatible fully functional 0.1 μm2 6T-SRAM cell. IEEE Electron Devices Meet. 1–4 (IEEE, 2008).

    Google Scholar 

  74. Fuechsle, M. et al. Spectroscopy of few-electron single-crystal silicon quantum dots. Nature Nanotechnol. 5, 502–505 (2010).

    Article  CAS  ADS  Google Scholar 

  75. Morley, G.W. et al. Initializing, manipulating and storing quantum information with bismuth dopants in silicon. Nature Mater. 9, 725–729 (2010).

    Article  CAS  ADS  Google Scholar 

  76. Smelyanskiy, V. N., Petukhov, A. G. & Osipov, V. V. Quantum computing on long-lived donor states of Li in Si. Phys. Rev. B 72, 081304 (2005).

    Article  ADS  CAS  Google Scholar 

  77. Calderón, M., Koiller, B., Hu, X. & Das Sarma, S. Quantum control of donor electrons at the Si–SiO2 interface. Phys. Rev. Lett. 96, 096802 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000).

    Article  ADS  Google Scholar 

  79. Stoneham, A. M., Fisher, A. J. & Greenland, P. T. Optically driven silicon-based quantum gates with potential for high-temperature operation. J. Phys. Condens. Matter 15, L447 (2003).

    Article  CAS  ADS  Google Scholar 

  80. Schenkel, T. et al. Solid state quantum computer development in silicon with single ion implantation. J. Appl. Phys. 94, 7017 (2003).

    Article  CAS  ADS  Google Scholar 

  81. Andresen, S. et al. Charge state control and relaxation in an atomically doped silicon device. Nano Lett. 7, 2000–2003 (2007).

    Article  CAS  ADS  Google Scholar 

  82. Tan, K. Y. et al. Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10, 11–15 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  83. Sellier, H. et al. Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys. Rev. Lett. 97, 206805 (2006).

    Article  CAS  ADS  PubMed  Google Scholar 

  84. Lyding, J., Shen, T., Hubacek, J., Tucker, J. & Abeln, G. Nanoscale patterning and oxidation of H-passivated Si (100)−2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope. Appl. Phys. Lett. 64, 2010–2012 (1994).

    Article  CAS  ADS  Google Scholar 

  85. Rokhinson, L. P., Guo, L. J., Chou, S. Y. & Tsui, D. C. Double-dot charge transport in Si single-electron/hole transistors. Appl. Phys. Lett. 76, 1591 (2000).

    Article  CAS  ADS  Google Scholar 

  86. Simmons, C. B. et al. Charge sensing and controllable tunnel coupling in a Si/SiGe double quantum dot. Nano Lett. 9, 3234–3238 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  87. Tracy, L. A. et al. Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry. Appl. Phys. Lett. 97, 192110 (2010).

    Article  ADS  CAS  Google Scholar 

  88. Sakr, M. R., Jiang, H. W., Yablonovitch, E. & Croke, E. T. Fabrication and characterization of electrostatic Si/SiGe quantum dots with an integrated read-out channel. Appl. Phys. Lett. 87, 223104 (2005).

    Article  ADS  CAS  Google Scholar 

  89. Berer, T. et al. Lateral quantum dots in Si/SiGe realized by a Schottky split-gate technique. Appl. Phys. Lett. 88, 162112 (2006).

    Article  ADS  CAS  Google Scholar 

  90. Angus, S. J., Ferguson, A. J., Dzurak, A. S. & Clark, R. G. Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051–2055 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  91. Shin, Y.-S. et al. Aluminum oxide for an effective gate in Si/SiGe two-dimensional electron gas systems. Semicond. Sci. Tech. 26, 055004 (2011).

    Article  ADS  CAS  Google Scholar 

  92. Ruess, F. J. et al. Toward atomic-scale device fabrication in silicon using scanning probe microscopy. Nano Lett. 4, 1969–1973 (2004).

    Article  CAS  ADS  Google Scholar 

  93. Hu, Y. et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotechnol. 2, 622–625 (2007).

    Article  CAS  ADS  Google Scholar 

  94. Zwanenburg, F. A., van Rijmenam, C. E. W. M., Fang, Y., Lieber, C. M. & Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 9, 1071–1079 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  95. Simmons, C. B. et al. Single-electron quantum dot in Si/SiGe with integrated charge sensing. Appl. Phys. Lett. 91, 213103 (2007).

    Article  ADS  CAS  Google Scholar 

  96. Lim, W. H. et al. Observation of the single-electron regime in a highly tunable silicon quantum dot. Appl. Phys. Lett. 95, 242102 (2009).

    Article  ADS  CAS  Google Scholar 

  97. Weitz, P., Haug, R., von Klitzing, K. & Schäffler, F. Tilted magnetic field studies of spin- and valley-splittings in Si/Si1−x Ge x heterostructures. Surf. Sci. 361-362, 542–546 (1996).

    Article  ADS  Google Scholar 

  98. Goswami, S. et al. Controllable valley splitting in silicon quantum devices. Nature Phys. 3, 41–45 (2007).

    Article  CAS  ADS  Google Scholar 

  99. Culcer, D., Cywinski, L., Li, Q. Z., Hu, X. & Das Sarma, S. Realizing singlet-triplet qubits in multivalley Si quantum dots. Phys. Rev. B 80, 205302 (2009).

    Article  ADS  CAS  Google Scholar 

  100. Friesen, M. & Coppersmith, S. N. Theory of valley-orbit coupling in a Si/SiGe quantum dot. Phys. Rev. B 81, 115324 (2010).

    Article  ADS  CAS  Google Scholar 

  101. Lai, N. S. et al. Pauli spin blockade in a highly tunable silicon double quantum dot. Preprint at http://arxiv.org/abs/1012.1410 (2010).

Download references

Acknowledgements

We thank A. M. Tyryshkin for discussions. J.J.L.M. is supported by the Royal Society and St John's College, Oxford, and acknowledges support from the Engineering and Physical Sciences Research Council (EPSRC) through the Centre for Advanced Electron Spin Resonance (EP/D048559/1) and the Japan Science and Technology Agency (JST)-EPSRC Cooperative Program (EP/H025952/1). D.R.M. is supported by an Australian Research Council Postdoctoral Fellowship (DP1093526). M.A.E. acknowledges support from the Army Research Office (ARO) (W911NF-08-1-0482). S.A.L. acknowledges support from the National Security Agency/Laboratory of Physical Sciences through Lawrence Berkeley National Laboratory (MOD 713106A), the National Science Foundation through the Princeton Materials Research Science and Engineering Center (DMR-0819860) and the ARO through Wisconsin. We apologize to those authors whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. L. Morton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, J., McCamey, D., Eriksson, M. et al. Embracing the quantum limit in silicon computing. Nature 479, 345–353 (2011). https://doi.org/10.1038/nature10681

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10681

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing