Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phenotypic plasticity and the epigenetics of human disease

Abstract

It is becoming clear that epigenetic changes are involved in human disease as well as during normal development. A unifying theme of disease epigenetics is defects in phenotypic plasticity — cells' ability to change their behaviour in response to internal or external environmental cues. This model proposes that hereditary disorders of the epigenetic apparatus lead to developmental defects, that cancer epigenetics involves disruption of the stem-cell programme, and that common diseases with late-onset phenotypes involve interactions between the epigenome, the genome and the environment. Increased understanding of epigenetic-disease mechanisms could lead to disease-risk stratification for targeted intervention and to targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nature of epigenetic lesions.
Figure 2: Beckwith–Wiedemann syndrome as an example of a monogenic disease that reveals mechanisms of normal epigenetic regulation.
Figure 3: Phenotypic plasticity and the epigenetics of human disease and ageing.
Figure 4: The epigenome at the intersection between environment and genetic variation.

Similar content being viewed by others

References

  1. Van Speybroeck, L. From epigenesis to epigenetics: the case of C. H. Waddington. Ann. NY Acad. Sci. 981, 61–81 (2002).

    Article  PubMed  Google Scholar 

  2. Debaun, M. R. & Feinberg, A. P. in Inborn Errors of Development: The Molecular Basis of Clinical Disorders of Morphogenesis (ed. Epstein, C. J.) 758–765 (Oxford Univ. Press, Oxford, USA, 2004).

    Google Scholar 

  3. Niemitz, E. L. et al. Microdeletion of LIT1 in familial Beckwith–Wiedemann syndrome. Am. J. Hum. Genet. 75, 844–849 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sparago, A. et al. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith–Wiedemann syndrome. Nature Genet. 36, 958–960 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. DeBaun, M. R. et al. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith–Wiedemann syndrome with cancer and birth defects. Am. J. Hum. Genet. 70, 604–611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diaz-Meyer, N., Yang, Y., Sait, S. N., Maher, E. R. & Higgins, M. J. Alternative mechanisms associated with silencing of CDKN1C in Beckwith–Wiedemann syndrome. J. Med. Genet. 42, 648–655 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horsthemke, B. & Buiting, K. Imprinting defects on human chromosome 15. Cytogenet. Genome Res. 113, 292–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lalande, M. Imprints of disease at GNAS1. J. Clin. Invest. 107, 793–794 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Bienvenu, T. & Chelly, J. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nature Rev. Genet. 7, 415–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Blanco-Betancourt, C. E. et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood 103, 2683–2690 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Gibbons, R. J. & Higgs, D. R. Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet. 97, 204–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Petrif, F. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (2002).

    Article  ADS  Google Scholar 

  15. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wilson, A. S., Power, B. E. & Molloy, P. L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta 1775, 138–162 (2007).

    CAS  PubMed  Google Scholar 

  17. Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nature Rev. Cancer 4, 143–153 (2004).

    Article  CAS  Google Scholar 

  18. Brueckner, B. et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 67, 1419–1423 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Wu, H. et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438, 981–987 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Greger, V., Passarge, E., Hopping, W., Messmer, E. & Horsthemke, B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet. 83, 155–158 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Costello, J. F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genet. 24, 132–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Esteller, M., Corn, P. G., Baylin, S. B. & Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225–3229 (2001).

    CAS  PubMed  Google Scholar 

  24. Frigola, J. et al. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genet. 38, 540–549 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Hattori, N. et al. Preference of DNA methyltransferases for CpG islands in mouse embryonic stem cells. Genome Res. 14, 1733–1740 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Gius, D. et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 6, 361–371 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Scrable, H. et al. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. Natl Acad. Sci. USA 86, 7480–7484 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    ADS  CAS  PubMed  Google Scholar 

  31. Feinberg, A. P. Genomic imprinting and gene activation in cancer. Nature Genet. 4, 110–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Kondo, M. et al. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10, 1193–1198 (1995).

    CAS  PubMed  Google Scholar 

  33. van Roozendaal, C. E. et al. Loss of imprinting of IGF2 and not H19 in breast cancer, adjacent normal tissue and derived fibroblast cultures. FEBS Lett. 437, 107–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Murphy, S. K. et al. Frequent IGF2/H19 domain epigenetic alterations and elevated IGF2 expression in epithelial ovarian cancer. Mol. Cancer Res. 4, 283–292 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Uyeno, S. et al. IGF2 but not H19 shows loss of imprinting in human glioma. Cancer Res. 56, 5356–5359 (1996).

    CAS  PubMed  Google Scholar 

  36. Yuan, J. et al. Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res 63, 4174–4180 (2003).

    CAS  PubMed  Google Scholar 

  37. Astuti, D. et al. Epigenetic alteration at the DLK1GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms' tumour. Br. J. Cancer 92, 1574–1580 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pedersen, I. S. et al. Frequent loss of imprinting of PEG1/MEST in invasive breast cancer. Cancer Res 59, 5449–5451 (1999).

    CAS  PubMed  Google Scholar 

  39. Varambally, S., et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Terranova, R., Agherbi, H., Boned, A., Meresse, S. & Djabali, M. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl Acad. Sci. USA 103, 6629–6634 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Esteve, P. O. et al. Direct interaction between DNMT1and G9a coordinates DNA and histone methylation during replication. Genes Dev. 20, 3089–3103 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rozenblatt-Rosen, O. et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl Acad. Sci. USA 95, 4152–4157 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nature Genet. 30, 365–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Scott, M. R., Westphal, K. H. & Rigby, P. W. Activation of mouse genes in transformed cells. Cell 34, 557–567 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Veigl, M. L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl Acad. Sci. USA 95, 8698–8702 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3, 89–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. DeBaun, M. R. & Tucker, M. A. Risk of cancer during the first four years of life in children from the Beckwith–Wiedemann syndrome registry. J. Pediatr. 132, 398–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Cui, H., Horon, I. L., Ohlsson, R., Hamilton, S. R. & Feinberg, A. P. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nature Med. 4, 1276–1280 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299, 1753–1755 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Woodson, K. et al. Loss of insulin-like growth factor-II imprinting and the presence of screen-detected colorectal adenomas in women. J. Natl Cancer Inst. 96, 407–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Holst, C. R. et al. Methylation of p16INK4a promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 63, 1596–1601 (2003).

    CAS  PubMed  Google Scholar 

  56. Yamada, Y. et al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc. Natl Acad. Sci. USA 102, 13580–13585 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, W. Y. et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nature Genet. 33, 197–202 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Sakatani, T. et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307, 1976–1978 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Holm, T. M. et al. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8, 275–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7, 21–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Harper, J. et al. Soluble IGF2 receptor rescues ApcMin/+ intestinal adenoma progression induced by Igf2 loss of imprinting. Cancer Res. 66, 1940–1948 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Ravenel, J.D. et al. Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms tumor. J. Natl Cancer Inst. 93, 1698–1703 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet. 37, 899–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Horton, S. J. et al. Continuous MLL–ENL expression is necessary to establish a 'Hox Code' and maintain immortalization of hematopoietic progenitor cells. Cancer Res. 65, 9245–9252 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Skuse, D. H. et al. Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387, 705–708 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Raefski, A. S. & O'Neill, M. J. Identification of a cluster of X-linked imprinted genes in mice. Nature Genet. 37, 620–624 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Bailey, A. et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med. 25, 63–77 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Kates, W. R. et al. Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. Am. J. Psychiatry 161, 539–546 (2004).

    Article  PubMed  Google Scholar 

  76. Kato, T., Iwamoto, K., Kakiuchi, C., Kuratomi, G. & Okazaki, Y. Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol. Psychiatry 10, 622–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. International Molecular Genetic Study of Autism Consortium. Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum. Mol. Genet. 10, 973–982 (2001).

  78. McInnis, M. G. et al. Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. Mol. Psychiatry 8, 288–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lu, Q. et al. Epigenetics, disease, and therapeutic interventions. Ageing Res. Rev. 5, 449–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Quddus, J. et al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 92, 38–53 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Richardson, B. DNA methylation and autoimmune disease. Clin. Immunol. 109, 72–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Sutherland, J. E. & Costa, M. Epigenetics and the environment. Ann. NY Acad. Sci. 983, 151–160 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Waterland, R. A., Lin, J. R., Smith, C. A. & Jirtle, R. L. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum. Mol. Genet. 15, 705–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Giovannucci, E. Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies. J. Nutr. 134, 2475S–2481S (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. DeBaun, M. R., Niemitz, E. L. & Feinberg, A. P. Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet. 72, 156–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Niemitz, E. L. & Feinberg, A. P. Epigenetics and assisted reproductive technology: a call for investigation. Am. J. Hum. Genet. 74, 599–609 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bjornsson, H. T., Fallin, M. D. & Feinberg, A. P. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20, 350–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet. 33, 70–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet. 38, 896–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Callinan, P. A. & Feinberg, A. P. The emerging science of epigenomics. Hum. Mol. Genet. 15, R95–R101 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Mack, G. S. Epigenetic cancer therapy makes headway. J. Natl Cancer Inst. 98, 1443–1444 (2006).

    Article  PubMed  Google Scholar 

  97. Yee, K. W., Jabbour, E., Kantarjian, H. M. & Giles, F. J. Clinical experience with decitabine in North American patients with myelodysplastic syndrome. Ann. Hematol. 84 (suppl. 13), 18–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Zheng, Y. et al. Selective HAT inhibitors as mechanistic tools for protein acetylation. Methods Enzymol. 376, 188–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Iyer, N. G., Ozdag, H. & Caldas, C. p300/CBP and cancer. Oncogene 23, 4225–4231 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Phiel, C. J. et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734–36741 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank H. Bjornsson, R. Ohlsson, T. Ekstrom, D. Gius and C. Ladd-Acosta for their many thoughtful insights, and J. Fairman for her artistry. This work was supported by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprintsandpermissions.

Correspondence should be addressed to the author (afeinberg@jhu.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinberg, A. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440 (2007). https://doi.org/10.1038/nature05919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05919

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing