Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1

Abstract

Targeted therapies are frequently combined with standard cytotoxic drugs to enhance clinical response. Targeting the B-cell lymphoma 2 (BCL-2) family of proteins is an attractive option to combat chemoresistance in leukemia. Preclinical and clinical studies indicate modest single-agent activity with selective BCL-2 inhibitors (for example, venetoclax). We show that venetoclax synergizes with cytarabine and idarubicin to increase antileukemic efficacy in a TP53-dependent manner. Although TP53 deficiency impaired sensitivity to combined venetoclax and chemotherapy, higher-dose idarubicin was able to suppress MCL1 and induce cell death independently of TP53. Consistent with an MCL1-specific effect, cell death from high-dose idarubicin was dependent on pro-apoptotic Bak. Combining higher-dose idarubicin with venetoclax was able to partially overcome resistance in Bak-deficient cells. Using inducible vectors and venetoclax to differentially target anti-apoptotic BCL-2 family members, BCL-2 and MCL1 emerged as critical and complementary proteins regulating cell survival in acute myeloid leukemia. Dual targeting of BCL-2 and MCL1, but not either alone, prolonged survival of leukemia-bearing mice. In conclusion, our findings support the further investigation of venetoclax in combination with standard chemotherapy, including intensified doses of idarubicin. Venetoclax should also be investigated in combination with direct inhibitors of MCL1 as a chemotherapy-free approach in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD . Acute myeloid leukemia. N Engl J Med 2015; 373: 1136–1152.

    Article  PubMed  Google Scholar 

  2. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 1993; 81: 3091–3096.

    CAS  PubMed  Google Scholar 

  3. Omidvar N, Kogan S, Beurlet S, le Pogam C, Janin A, West R et al. BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res 2007; 67: 11657–11667.

    Article  CAS  PubMed  Google Scholar 

  4. Mehta S, Shukla S, Vora H . Overexpression of Bcl2 protein predicts chemoresistance in acute myeloid leukemia: its correlation with FLT3. Neoplasma 2012; 60: 666–675.

    Article  Google Scholar 

  5. Wojcik I, Szybka M, Golanska E, Rieske P, Blonski J, Robak T et al. Abnormalities of the P53, MDM2, BCL2 and BAX genes in acute leukemias. Neoplasma 2004; 52: 318–324.

    Google Scholar 

  6. Chen L, Chen W, Mysliwski M, Serio J, Ropa J, Abulwerdi F et al. Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition. Leukemia 2015; 29: 1290–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strasser A, Harris AW, Bath ML, Cory S . Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990; 348: 331–333.

    Article  CAS  PubMed  Google Scholar 

  8. Czabotar PE, Lessene G, Strasser A, Adams JM . Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15: 49–63.

    Article  CAS  PubMed  Google Scholar 

  9. Pollyea D, DiNardo C, Thirman MJ, Letai A, Wei A, Jonas B et al. A phase 1b study of venetoclax (ABT-199/GDC-0199) in combination with decitabine or azacitidine in treatment-naive patients with acute myelogenous leukemia who areâ©ľto 65 years and not eligible for standard induction therapy. J Clin Oncol 2016 34: 15(Suppl): Abstract 7009, 7009-7009.

  10. Wei A, Strickland SA, Roboz GJ, Hou J-Z, Fiedler W, Lin TL et al. Safety and efficacy of venetoclax plus low-dose cytarabine in treatment-naive patients aged â©ľ65 years with acute myeloid leukemia. Blood 2016; 128: 102.

    Google Scholar 

  11. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015; 126: 291–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao J, Niu X, Edwards H, Wang Y, Taub JW, Lin H et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Blood 2015; 126: 2469.

    Google Scholar 

  13. Rahmani M, Aust MM, Hawkins E, Parker RE, Ross M, Kmieciak M et al. Co-administration of the mTORC1/TORC2 inhibitor INK128 and the Bcl-2/Bcl-xL antagonist ABT-737 kills human myeloid leukemia cells through Mcl-1 down-regulation and AKT inactivation. Haematologica 2015; 100: 1553–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lehmann C, Friess T, Birzele F, Kiialainen A, Dangl M . Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models. J Hematol Oncol 2016; 9: 50.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Knorr K, Schneider P, Meng X, Dai H, Smith BD, Hess AD et al. MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors. Cell Death Differ 2015; 22: 2133–2142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Konopleva M, Milella M, Ruvolo P, Watts J, Ricciardi M, Korchin B et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 2012; 26: 778–787.

    Article  CAS  PubMed  Google Scholar 

  17. Jacque N, Ronchetti AM, Larrue C, Meunier G, Birsen R, Willems L et al. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood 2015; 126: 1346–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwartz J, Niu X, Walton E, Hurley L, Lin H, Edwards H et al. Synergistic anti-leukemic interactions between ABT-199 and panobinostat in acute myeloid leukemia ex vivo. Am J Transl Res 2016; 8: 3893.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas D, Powell JA, Vergez F, Segal DH, Nguyen NY, Baker A et al. Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1 transcription. Blood 2013; 122: 738–748.

    Article  CAS  PubMed  Google Scholar 

  20. Powell JA, Thomas D, Barry EF, Kok CH, McClure BJ, Tsykin A et al. Expression profiling of a hemopoietic cell survival transcriptome implicates osteopontin as a functional prognostic factor in AML. Blood 2009; 114: 4859–4870.

    Article  CAS  PubMed  Google Scholar 

  21. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  22. Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 2012; 26: 120–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee EF, Czabotar PE, Van Delft MF, Michalak EM, Boyle MJ, Willis SN et al. A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. J Cell Biol 2008; 180: 341–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tao Z-F, Hasvold L, Wang L, Wang X, Petros AM, Park CH et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett 2014; 5: 1088–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov 2014; 4: 362–375.

    Article  CAS  PubMed  Google Scholar 

  26. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 2016; 538: 477–482.

    Article  PubMed  Google Scholar 

  27. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S et al. Programmed anuclear cell death delimits platelet life span. Cell 2007; 128: 1173–1186.

    Article  CAS  PubMed  Google Scholar 

  28. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 2003; 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  29. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  30. Nakano K, Vousden KH . PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  31. Yu J, Zhang L . PUMA, a potent killer with or without p53. Oncogene 2008; 27 (Suppl 1): S71–S83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Happo L, Strasser A, Cory S . BH3-only proteins in apoptosis at a glance. J Cell Sci 2012; 125 (Pt 5): 1081–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chyla B, Popovic R, Potluri J, Hayslip J, Huang X, Zhu M et al. Correlative biomarkers of response to venetoclax in combination with chemotherapy or hypomethylating agents in elderly untreated patients with acute myeloid leukemia. Blood 2016; 128: 1709.

    Google Scholar 

  34. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005; 19: 1294–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stone R . The multi-kinase inhibitor midostaurin (M) prolongs survival compared with placebo (P) in combination with daunorubicin (D)/cytarabine (C) induction (ind), high-dose C consolidation (consol), and as maintenance (maint) therapy in newly diagnosed acute myeloid leukemia (AML) Patients (pts) age 18-60 with FLT3 mutations (muts): an International Prospective Randomized (rand) P-Controlled Double-Blind Trial (CALGB 10603/RATIFY [Alliance]). Blood 2015; 126: 6.

    Article  Google Scholar 

  36. Stein E . Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: results of a phase 1/2 trial. Blood 2015; 126: 323.

    Google Scholar 

  37. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 2016; 374: 311–322.

    Article  CAS  PubMed  Google Scholar 

  38. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov 2016; 6: 1106–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vo T-T, Ryan J, Carrasco R, Neuberg D, Rossi DJ, Stone RM et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 2012; 151: 344–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin KH, Winter PS, Xie A, Roth C, Martz CA, Stein EM et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci Rep 2016; 6: 27696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374: 2209–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mason K, Vandenberg C, Scott C, Wei A, Cory S, Huang D et al. In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas. Proc Natl Acad Sci USA 2008; 105: 17961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Opferman JT . Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 2005; 307: 1101–1104.

    Article  CAS  PubMed  Google Scholar 

  45. Opferman J, Iwasaki H, Ong C, Suh H, Mizuno S, Akashi K et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Sci STKE 2005; 307: 1101.

    CAS  Google Scholar 

  46. Niu X, Zhao J, Ma J, Xie C, Edwards H, Wang G et al. Binding of released Bim to Mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome by combination with daunorubicin or cytarabine in AML cells. Clin Cancer Res 2016; 22: 4440–4451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tidefelt U, Sundman-Engberg B, Paul C . Comparison of the intracellular pharmacokinetics of daunorubicin and idarubicin in patients with acute leukemia. Leukemia Res 1994; 18: 293–297.

    Article  CAS  Google Scholar 

  48. Berman E, Wittes RE, Leyland-Jones B, Casper ES, Gralla RJ, Howard J et al. Phase I and clinical pharmacology studies of intravenous and oral administration of 4-demethoxydaunorubicin in patients with advanced cancer. Cancer Res 1983; 43 (12 Part 1): 6096–6101.

    CAS  PubMed  Google Scholar 

  49. Eksborg S, Souderberg M, Nilsson B, Antila K . Plasma pharmacokinetics of idarubicin and its 13-hydroxymetabolite after intravenous and oral administration under fasting and non-fasting conditions. Acta Oncol 1990; 29: 921–925.

    Article  CAS  PubMed  Google Scholar 

  50. Tedeschi A, Montillo M, Strocchi E, Cafro AM, Tresoldi E, Intropido L et al. High-dose idarubicin in combination with Ara-C in patients with relapsed or refractory acute lymphoblastic leukemia: a pharmacokinetic and clinical study. Cancer Chemother Pharmacol 2007; 59: 771–779.

    Article  CAS  PubMed  Google Scholar 

  51. Hou H, Chou W, Kuo Y, Liu C, Lin L, Tseng M et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J 2015; 5: e331.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Placzek W, Wei J, Kitada S, Zhai D, Reed J, Pellecchia M . A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis 2010; 1: e40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scherr A-L, Gdynia G, Salou M, Radhakrishnan P, Duglova K, Heller A et al. Bcl-xL is an oncogenic driver in colorectal cancer. Cell Death Dis 2016; 7: e2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Leukemia Foundation, Victorian Cancer Agency, Arrow Bone Marrow Transplant Foundation, Leukemia Lymphoma Society, Australian Cancer Research Foundation, Victorian State Government Operational Infrastructure Support (OIS) and the National Health and Medical Research Council (fellowships and grants including an Independent Infrastructure Support Scheme grant 9000220); we also thank Abbvie for providing venetoclax and A-1155463.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M A Guthridge or A H Wei.

Ethics declarations

Competing interests

AHW has served on an Abbvie advisory board and is a recipient of clinical research funding. AHW and AWR are conducting clinical trials involving venetoclax. DS, DCSH, KL, SPG and AWR are employees of the Walter and Eliza Hall Institute of Medical Research that receives milestone and royalty payments in relation to venetoclax.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teh, TC., Nguyen, NY., Moujalled, D. et al. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1. Leukemia 32, 303–312 (2018). https://doi.org/10.1038/leu.2017.243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.243

This article is cited by

Search

Quick links