Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Distribution of genomic breakpoints in chronic myeloid leukemia: analysis of 308 patients

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Gillert E, Leis T, Repp R, Reichel M, Hosch A, Breitenlohner I et al. A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells. Oncogene 1999; 18: 4663–4671.

    Article  CAS  PubMed  Google Scholar 

  2. Reiter A, Saussele S, Grimwade D, Wiemels JL, Segal MR, Lafage-Pochitaloff M et al. Genomic anatomy of the specific reciprocal translocation t(15;17) in acute promyelocytic leukemia. Genes Chromosomes Cancer 2003; 36: 175–188.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang JG, Goldman JM, Cross NC . Characterization of genomic BCR-ABL breakpoints in chronic myeloid leukaemia by PCR. Br J Haematol 1995; 90: 138–146.

    Article  CAS  PubMed  Google Scholar 

  4. Mattarucchi E, Guerini V, Rambaldi A, Campiotti L, Venco A, Pasquali F et al. Microhomologies and interspersed repeat elements at genomic breakpoints in chronic myeloid leukemia. Genes Chromosomes Cancer 2008; 47: 625–632.

    Article  CAS  PubMed  Google Scholar 

  5. Jeffs AR, Benjes SM, Smith TL, Sowerby SJ, Morris CM . The BCR gene recombines preferentially with Alu elements in complex BCR-ABL translocations of chronic myeloid leukaemia. Hum Mol Genet 1998; 7: 767–776.

    Article  CAS  PubMed  Google Scholar 

  6. Krumbholz M, Karl M, Tauer JT, Thiede C, Rascher W, Suttorp M et al. Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer 2012; 51: 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  7. Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simoes MA et al. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia 2010; 24: 1742–1750.

    Article  CAS  PubMed  Google Scholar 

  8. Bartley PA, Martin-Harris MH, Budgen BJ, Ross DM, Morley AA . Rapid isolation of translocation breakpoints in chronic myeloid and acute promyelocytic leukaemia. Br J Haematol 2010; 149: 231–236.

    Article  CAS  PubMed  Google Scholar 

  9. Sobrinho-Simoes M, Wilczek V, Score J, Cross NC, Apperley JF, Melo JV . In search of the original leukemic clone in chronic myeloid leukemia patients in complete molecular remission after stem cell transplantation or imatinib. Blood 2010; 116: 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  10. Ross DM, Schafranek L, Hughes TP, Nicola M, Branford S, Score J . Genomic translocation breakpoint sequences are conserved in BCR-ABL1 cell lines despite the presence of amplification. Cancer Genet Cytogenet 2009; 189: 138–139.

    Article  CAS  PubMed  Google Scholar 

  11. Rahman M, Pearson LM, Heien HCA . Modified Anderson-Darling Test for Uniformity. Bull Malays Math Sci Soc 2006; 29: 11–16.

    Google Scholar 

  12. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009; 37: W202–W208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato T, Inagaki H, Kogo H, Ohye T, Yamada K, Emanuel BS et al. Two different forms of palindrome resolution in the human genome: deletion or translocation. Hum Mol Genet 2008; 17: 1184–1191.

    Article  CAS  PubMed  Google Scholar 

  14. Saglio G, Storlazzi CT, Giugliano E, Surace C, Anelli L, Rege-Cambrin G et al. A 76-kb duplicon maps close to the BCR gene on chromosome 22 and the ABL gene on chromosome 9: possible involvement in the genesis of the Philadelphia chromosome translocation. Proc Natl Acad Sci USA 2002; 99: 9882–9887.

    Article  CAS  Google Scholar 

  15. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Bartley PA et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 2010; 24: 1719–1724.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DMR was supported by a Leukaemia Foundation of Australia Scholarship. This study was supported in part by research funding from Novartis to DMR and TPH. Additional samples were provided by the Australasian Leukaemia and Lymphoma Group Tissue Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Ross.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, D., O'Hely, M., Bartley, P. et al. Distribution of genomic breakpoints in chronic myeloid leukemia: analysis of 308 patients. Leukemia 27, 2105–2107 (2013). https://doi.org/10.1038/leu.2013.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.116

This article is cited by

Search

Quick links