Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Blocking cytokine signaling along with intense Bcr-Abl kinase inhibition induces apoptosis in primary CML progenitors

Abstract

In chronic myeloid leukemia (CML) cell lines, brief exposure to pharmacologically relevant dasatinib concentrations results in apoptosis. In this study, we assess the impact of intensity and duration of Bcr-Abl kinase inhibition on primary CD34+ progenitors of chronic phase CML patients. As CML cells exposed to dasatinib in vivo are in a cytokine-rich environment, we also assessed the effect of cytokines (six growth factors cocktail or granulocyte-macrophage colony-stimulating factor (CSF) or granulocyte-CSF) in combination with dasatinib. In the presence of cytokines, short-term intense Bcr-Abl kinase inhibition (90% p-Crkl inhibition) with 100 nM dasatinib did not reduce CD34+ colony-forming cells (CFCs). In contrast, without cytokines, short-term exposure to dasatinib reduced CML-CD34+ CFCs by 70–80%. When cytokines were added immediately after short-term exposure to dasatinib, CML-CD34+ cells remained viable, suggesting that oncogene dependence of these cells can be overcome by concomitant or subsequent exposure to cytokines. Additional inhibition of Janus tyrosine kinase (Jak) activity re-established the sensitivity of CML progenitors to intense Bcr-Abl kinase inhibition despite the presence of cytokines. These findings support the contention that therapeutic strategies combining intense Bcr-Abl kinase inhibition and blockade of cytokine signaling pathways can be effective for eradication of CML progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rowley JD . Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  PubMed  Google Scholar 

  2. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  3. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  4. Druker BJ, Guilhot F, O′Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  PubMed  Google Scholar 

  5. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 2007; 109: 58–60.

    Article  CAS  PubMed  Google Scholar 

  6. Bocchia M, Ippoliti M, Gozzetti A, Abruzzese E, Calabrese S, Amabile M et al. CD34+/Ph+ cells are still detectable in chronic myeloid leukemia patients with sustained and prolonged complete cytogenetic remission during treatment with imatinib mesylate. Leukemia 2008; 22: 426–428.

    Article  CAS  PubMed  Google Scholar 

  7. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006; 107: 4532–4539.

    Article  CAS  PubMed  Google Scholar 

  8. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  PubMed  Google Scholar 

  9. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL . Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+CML cells. Blood 2007; 109: 4016–4019.

    Article  CAS  PubMed  Google Scholar 

  10. Holtz MS, Forman SJ, Bhatia R . Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia 2005; 19: 1034–1041.

    Article  CAS  PubMed  Google Scholar 

  11. Jorgensen HG, Allan EK, Graham SM, Godden JL, Richmond L, Elliott MA et al. Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro. Leukemia 2005; 19: 1184–1191.

    Article  CAS  PubMed  Google Scholar 

  12. Konig H, Copland M, Chu S, Jove R, Holyoake TL, Bhatia R . Effects of dasatinib on SRC kinase activity and downstream intracellular signaling in primitive chronic myelogenous leukemia hematopoietic cells. Cancer Res 2008; 68: 9624–9633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shah NP, Kasap C, Weier C, Balbas M, Nicoll JM, Bleickardt E et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 2008; 14: 485–493.

    Article  CAS  PubMed  Google Scholar 

  14. Konig H, Holtz M, Modi H, Manley P, Holyoake TL, Forman SJ et al. Enhanced BCR-ABL kinase inhibition does not result in increased inhibition of downstream signaling pathways or increased growth suppression in CML progenitors. Leukemia 2008; 22: 748–755.

    Article  CAS  PubMed  Google Scholar 

  15. le Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 1999; 91: 163–168.

    Article  CAS  PubMed  Google Scholar 

  16. Peng B, Hayes M, Resta D, Racine-Poon A, Druker BJ, Talpaz M et al. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 2004; 22: 935–942.

    Article  CAS  PubMed  Google Scholar 

  17. Cortes JE, Egorin MJ, Guilhot F, Molimard M, Mahon FX . Pharmacokinetic/pharmacodynamic correlation and blood-level testing in imatinib therapy for chronic myeloid leukemia. Leukemia 2009; 23: 1537–1544.

    Article  CAS  PubMed  Google Scholar 

  18. Hochhaus A, Muller MC, Radich J, Branford S, Kantarjian HM, Hanfstein B et al. Dasatinib-associated major molecular responses in patients with chronic myeloid leukemia in chronic phase following imatinib failure: response dynamics and predictive value. Leukemia 2009; 23: 1628–1633.

    Article  CAS  PubMed  Google Scholar 

  19. Shah NP, Kantarjian HM, Kim DW, Rea D, Dorlhiac-Llacer PE, Milone JH et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol 2008; 26: 3204–3212.

    Article  CAS  PubMed  Google Scholar 

  20. Snead JL, O’Hare T, Adrian LT, Eide CA, Lange T, Druker BJ et al. Acute dasatinib exposure commits Bcr-Abl-dependent cells to apoptosis. Blood 2009; 114: 3459–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hiwase DK, White DL, Saunders VA, Kumar S, Melo JV, Hughes TP . Short-term intense Bcr-Abl kinase inhibition with nilotinib is adequate to trigger cell death in BCR-ABL(+) cells. Leukemia 2009; 23: 1205–1206.

    Article  CAS  PubMed  Google Scholar 

  22. Hiwase DK, Saunders V, Hewett D, Frede A, Zrim S, Dang P et al. Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res 2008; 14: 3881–3888.

    Article  CAS  PubMed  Google Scholar 

  23. White D, Saunders V, Lyons AB, Branford S, Grigg A, To LB et al. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood 2005; 106: 2520–2526.

    Article  CAS  PubMed  Google Scholar 

  24. Bullock J, Noory C, Men A, Ramchandani RLK . Clinical Pharmacology Review: Spycel, Dasatinib, Application number 21-986. US Food and Drug Administration, Center for Drug Evaluation and Research 2006, http://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4220-B1-01BristolMyersSquibb-Background.pdf.

    Google Scholar 

  25. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    Article  CAS  PubMed  Google Scholar 

  26. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    Article  CAS  PubMed  Google Scholar 

  27. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC . Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006; 108: 1370–1373.

    Article  CAS  PubMed  Google Scholar 

  28. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW et al. Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 2007; 109: 2147–2155.

    Article  CAS  PubMed  Google Scholar 

  30. Chu S, Holtz M, Gupta M, Bhatia R . BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 2004; 103: 3167–3174.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C . Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci U S A 1999; 96: 12804–12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian SS, Lamb P, Seidel HM, Stein RB, Rosen J . Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 1994; 84: 1760–1764.

    CAS  PubMed  Google Scholar 

  33. Bashey A, Healy L, Marshall CJ . Proliferative but not nonproliferative responses to granulocyte colony-stimulating factor are associated with rapid activation of the p21ras/MAP kinase signalling pathway. Blood 1994; 83: 949–957.

    CAS  PubMed  Google Scholar 

  34. Dong F, Larner AC . Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from the Janus kinases. Blood 2000; 95: 1656–1662.

    CAS  PubMed  Google Scholar 

  35. Belloc F, Airiau K, Jeanneteau M, Garcia M, Guerin E, Lippert E et al. The stem cell factor-c-KIT pathway must be inhibited to enable apoptosis induced by BCR-ABL inhibitors in chronic myelogenous leukemia cells. Leukemia 2009; 23: 679–685.

    Article  CAS  PubMed  Google Scholar 

  36. Chalandon Y, Jiang X, Loutet S, Eaves AC, Eaves CJ . Growth autonomy and lineage switching in BCR-ABL-transduced human cord blood cells depend on different functional domains of BCR-ABL. Leukemia 2004; 18: 1006–1012.

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Joha S, Idziorek T, Corm S, Hetuin D, Philippe N et al. BCR-ABL mutants spread resistance to non-mutated cells through a paracrine mechanism. Leukemia 2008; 22: 791–799.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by the NHMRC grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T P Hughes.

Ethics declarations

Competing interests

Devendra K Hiwase, Jason A Powell, Verity A Saunders, Stephanie A Zrim, Amity K Frede, Mark A Guthridge, Richard J D’andrea, Luen Bik To, Junia V Melo and Sharad Kumar have no conflict of interest. Timothy Hughes and Deborah L White receive honoraria and research grants from Novartis and Bristol-Myers Squibb. Angel F Lopez receives honoraria and research grants from CSL.

Additional information

contribution: Devendra K Hiwase designed the experiments, analyzed the data and wrote the paper. Richard J D’Andrea, Mark A Guthridge, Angel F Lopez and Luen Bik To provided critical review of the paper. Deborah L White, Junia V Melo, Sharad Kumar and Timothy P Hughes helped in designing the experiments, analyzing the data and writing the paper. Jason A Powell, Verity A Saunders, Stephanie A Zrim and Amity Frede helped in performing the experiments.

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiwase, D., White, D., Powell, J. et al. Blocking cytokine signaling along with intense Bcr-Abl kinase inhibition induces apoptosis in primary CML progenitors. Leukemia 24, 771–778 (2010). https://doi.org/10.1038/leu.2009.299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.299

Keywords

This article is cited by

Search

Quick links