Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Studies and Practice

Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males

Abstract

Background/Objectives:

In obesity, improved muscle insulin sensitivity following exercise training has been linked to the lowering of diacylglycerol (DAG) and ceramide concentrations. Little is known, however, about how improved insulin action with exercise training in obese individuals relates to lipid droplet (LD) adaptations in skeletal muscle. In this study we investigated the hypothesis that short-term sprint interval training (SIT) and moderate-intensity continuous training (MICT) in obese individuals would increase perilipin (PLIN) expression, increase the proportion of LDs in contact with mitochondria and reduce muscle concentrations of DAGs and ceramides.

Methods:

Sixteen sedentary obese males performed 4 weeks of either SIT (4–7 × 30 s sprints at 200% Wmax, 3 days week) or MICT (40–60 min cycling at ~65% VO2peak, 5 days per week), and muscle biopsies were obtained pre- and post-training.

Results:

Training increased PLIN2 (SIT 90%, MICT 68%) and PLIN5 (SIT 47%, MICT 34%) expression in type I fibres only, and increased PLIN3 expression in both type I (SIT 63%, MICT 67%) and type II fibres (SIT 70%, MICT 160%) (all P<0.05). Training did not change LD content but increased the proportion of LD in contact with mitochondria (SIT 12%, MICT 21%, P<0.01). Ceramides were reduced following training (SIT −10%, MICT −7%, P<0.05), but DAG was unchanged. No training × group interactions were observed for any variables.

Conclusions:

These results confirm the hypothesis that SIT and MICT results in remodelling of LDs and lowers ceramide concentrations in skeletal muscle of sedentary obese males.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goodpaster BH, He J, Watkins S, Kelley DE . Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86: 5755–5761.

    Article  CAS  PubMed  Google Scholar 

  2. Kelley DE, Goodpaster B, Wing RR, Simoneau JA . Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999; 277 (6 Pt 1): E1130–E1141.

    CAS  PubMed  Google Scholar 

  3. van Loon LJC, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA . Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 2004; 287: E558–E565.

    Article  CAS  PubMed  Google Scholar 

  4. Samuel VT, Shulman GI . Mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148: 852–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Loon LJ, Goodpaster BH . Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch 2006; 451: 606–616.

    Article  PubMed  Google Scholar 

  6. Itani SI, Ruderman NB, Schmieder F, Boden G . Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002; 51: 2005–2011.

    Article  CAS  PubMed  Google Scholar 

  7. Adams JM II, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 2004; 53: 25–31.

    Article  CAS  PubMed  Google Scholar 

  8. Bergman BC, Hunerdosse DM, Kerege A, Playdon MC, Perreault L . Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia 2012; 55: 1140–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moro C, Galgani JE, Luu L, Pasarica M, Mairal A, Bajpeyi S et al. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab 2009; 94: 3440–3447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Straczkowski M, Kowalska I, Baranowski M, Nikolajuk A, Otziomek E, Zabielski P et al. Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes. Diabetologia 2007; 50: 2366–2373.

    Article  CAS  PubMed  Google Scholar 

  11. Thrush AB, Brindley DN, Chabowski A, Heigenhauser GJ, Dyck DJ . Skeletal muscle lipogenic protein expression is not different between lean and obese individuals: a potential factor in ceramide accumulation. J Clin Endocrinol Metab 2009; 94: 5053–5061.

    Article  CAS  PubMed  Google Scholar 

  12. Amati F, Dube JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P, Coen PM et al. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes 2011; 60: 2588–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH . Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes. J Appl Physiol 2010; 108: 1134–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jocken JW, Moro C, Goossens GH, Hansen D, Mairal A, Hesselink MK et al. Skeletal muscle lipase content and activity in obesity and type 2 diabetes. J Clin Endocrinol Metab 2010; 95: 5449–5453.

    Article  CAS  PubMed  Google Scholar 

  15. Skovbro M, Baranowski M, Skov-Jensen C, Flint A, Dela F, Gorski J et al. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia 2008; 51: 1253–1260.

    Article  CAS  PubMed  Google Scholar 

  16. Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ et al. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 2006; 291: E99–E107.

    Article  CAS  PubMed  Google Scholar 

  17. Dubé JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH . Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab 2008; 294: E882–E888.

    Article  PubMed  Google Scholar 

  18. Dubé JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A, Coen P et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 2011; 54: 1147–1156.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Louche K, Badin PM, Montastier E, Laurens C, Bourlier V, de Glisezinski I et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab 2013; 98: 4863–4871.

    Article  CAS  PubMed  Google Scholar 

  20. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 2008; 586: 151–160.

    Article  CAS  PubMed  Google Scholar 

  21. Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker TA et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol 2013; 591 (Pt 3): 641–656.

    Article  CAS  PubMed  Google Scholar 

  22. Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 2013; 591 (Pt 3): 657–675.

    Article  CAS  PubMed  Google Scholar 

  23. Gibala MJ, Little JP, Macdonald MJ, Hawley JA . Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 2012; 590 (Pt 5): 1077–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shaw CS, Jones DA, Wagenmakers AJ . Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 2008; 129: 65–72.

    Article  CAS  PubMed  Google Scholar 

  25. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ . Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 2007; 292: R1271–R1278.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Wang Y, Li J, Yu J, Pu J, Li L et al. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. J Proteome Res 2011; 10: 4757–4768.

    Article  CAS  PubMed  Google Scholar 

  27. MacPherson RE, Peters SJ . Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis. Appl Physiol Nutr Metab 2015; 40: 641–651.

    Article  CAS  PubMed  Google Scholar 

  28. Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F et al. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes 2012; 61: 2679–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bosma M, Sparks LM, Hooiveld GJ, Jorgensen JA, Houten SM, Schrauwen P et al. Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochim Biophys Acta 2013; 1831: 844–852.

    Article  CAS  PubMed  Google Scholar 

  30. Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N et al. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 2014; 3: 652–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA, Gropler MC et al. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 2006; 55: 3418–3428.

    Article  CAS  PubMed  Google Scholar 

  32. Sztalryd C, Bell M, Lu X, Mertz P, Hickenbottom S, Chang BH et al. Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. J Biol Chem 2006; 281: 34341–34348.

    Article  CAS  PubMed  Google Scholar 

  33. Covington JD, Galgani JE, Moro C, LaGrange JM, Zhang Z, Rustan AC et al. Skeletal muscle perilipin 3 and coatomer proteins are increased following exercise and are associated with fat oxidation. PLoS One 2014; 9: e91675.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Covington JD, Noland RC, Hebert RC, Masinter BS, Smith SR, Rustan AC et al. Perilipin 3 differentially regulates skeletal muscle lipid oxidation in active, sedentary, and type 2 diabetic males. J Clin Endocrinol Metab 2015; 100: 3683–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA . Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab 2012; 37: 724–735.

    Article  CAS  PubMed  Google Scholar 

  36. Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG et al. Preferential utilization of perilipin 2-associated intramuscular triglycerides during 1 h of moderate-intensity endurance-type exercise. Exp Physiol 2012; 97: 970–980.

    Article  CAS  PubMed  Google Scholar 

  37. Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, van Loon LJ . Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2012; 303: E1158–E1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe A, Barker TA et al. Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men. J Physiol 2016; 594: 2307–2321.

    Article  CAS  PubMed  Google Scholar 

  39. Bergström J . Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 1975; 35: 609–616.

    Article  PubMed  Google Scholar 

  40. Koopman R, Schaart G, Hesselink MK . Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 2001; 116: 63–68.

    CAS  PubMed  Google Scholar 

  41. Broskey NT, Daraspe J, Humbel BM, Amati F . Skeletal muscle mitochondrial and lipid droplet content assessed with standardized grid sizes for stereology. J Appl Physiol 2013; 115: 765–770.

    Article  CAS  PubMed  Google Scholar 

  42. Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A, Almasy L et al. Plasma lipid profiling in a large population-based cohort. J Lipid Res 2013; 54: 2898–2908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tonks KT, Coster AC, Christopher MJ, Chaudhuri R, Xu A, Gagnon-Bartsch J et al. Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity 2016; 24: 908–916.

    Article  CAS  PubMed  Google Scholar 

  44. Cohen J . A power primer. Psychol Bull 1992; 112: 155–159.

    Article  CAS  PubMed  Google Scholar 

  45. Bergman BC, Brozinick JT, Strauss A, Bacon S, Kerege A, Bui HH et al. Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans. Diabetologia 2016; 59: 785–798.

    Article  CAS  PubMed  Google Scholar 

  46. Chaurasia B, Summers SA . Ceramides–lipotoxic inducers of metabolic disorders. Trends Endocrinol Metab 2015; 26: 538–550.

    Article  CAS  PubMed  Google Scholar 

  47. Amati F . Revisiting the diacylglycerol-induced insulin resistance hypothesis. Obes Rev 2012; 13 (Suppl 2): 40–50.

    Article  CAS  PubMed  Google Scholar 

  48. Devries MC, Samjoo IA, Hamadeh MJ, McCready C, Raha S, Watt MJ et al. Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women. J Clin Endocrinol Metab 2013; 98: 4852–4862.

    Article  CAS  PubMed  Google Scholar 

  49. Meex RC, Hoy AJ, Mason RM, Martin SD, McGee SL, Bruce CR et al. ATGL-mediated triglyceride turnover and the regulation of mitochondrial capacity in skeletal muscle. Am J Physiol Endocrinol Metab 2015; 308: E960–E970.

    Article  PubMed  Google Scholar 

  50. Rambold AS, Cohen S, Lippincott-Schwartz J . Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 2015; 32: 678–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koves TR, Sparks LM, Kovalik JP, Mosedale M, Arumugam R, DeBalsi KL et al. PPARgamma coactivator-1alpha contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans. J Lipid Res 2013; 54: 522–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kleinert M, Parker BL, Chaudhuri R, Fazakerley DJ, Serup A, Thomas KC et al. mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Mol Metab 2016; 5: 646–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bajpeyi S, Reed MA, Molskness S, Newton C, Tanner CJ, McCartney JS et al. Effect of short-term exercise training on intramyocellular lipid content. Appl Physiol Nutr Metab 2012; 37: 822–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH . Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol Endocrinol Metab 2004; 287: E857–E862.

    Article  CAS  PubMed  Google Scholar 

  55. Granneman JG, Moore HP, Mottillo EP, Zhu Z, Zhou L . Interactions of perilipin-5 (plin5) with adipose triglyceride lipase. J Biol Chem 2011; 286: 5126–5135.

    Article  CAS  PubMed  Google Scholar 

  56. Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S, Morinaga H et al. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J Biol Chem 2012; 287: 23852–23863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laurens C, Bourlier V, Mairal A, Louche K, Badin PM, Mouisel E et al. Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle. Sci Rep 2016; 6: 38310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang H, Sreenevasan U, Hu H, Saladino A, Polster BM, Lund LM et al. Perilipin 5, lipid droplet associated protein provides physical and metabolic linkage to mitochondria. J Lipid Res 2011; 52: 2159–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bosma M, Minnaard R, Sparks LM, Schaart G, Losen M, de Baets MH et al. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol 2012; 137: 205–216.

    Article  CAS  PubMed  Google Scholar 

  60. Ramos SV, Turnbull PC, MacPherson RE, LeBlanc PJ, Ward WE, Peters SJ . Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction. Exp Physiol 2015; 100: 450–462.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The antibody against myosin (human slow twitch fibres, A4.840) used in the study was developed by Dr Blau and obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. This work was supported by a grant from the Insulin Dependent Diabetes Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C S Shaw.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepherd, S., Cocks, M., Meikle, P. et al. Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. Int J Obes 41, 1745–1754 (2017). https://doi.org/10.1038/ijo.2017.170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.170

This article is cited by

Search

Quick links